0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancements in Riverine Fish Movement Modeling: Bridging Environmental Complexity and Fish Behavior

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdelaziz SMA. 2013. Numerical simulation of fish behavior and fish movement through passages [dissertation]. Technical University of Munich.
  • Arenas A, Politano M, Weber L, Timko M. 2015. Analysis of movements and behaviour of smolts swimming in hydropower reservoirs. Ecol Modell. 312:292–307. doi: 10.1016/j.ecolmodel.2015.05.015.
  • Balchen JD. 1979. Modelling, prediction and control of fish behaviour In: Leondes CT, editor. Control and dynamic systems. New York (NY): Academic Press. p. 99–146.
  • Ben Jebria N. 2021. Modelling Atlantic Salmon behavior approaching downstream migration passage facility [dissertation]. Claude Bernard Lyon 1 University.
  • Benson T, de Bie J, Gaskell J, Vezza P, Kerr J, Lumbroso D, Owen M, Kemp P. 2021. Agent-based modelling of juvenile eel migration via selective tidal stream transport. Ecol Modell. 443:109448. doi: 10.1016/j.ecolmodel.2021.109448.
  • Blank MD. 2008. Advanced studies of fish passage through culverts: 1-D and 3-D hydraulic modeling of velocity, fish energy expenditure, and a new barrier assessment method [MS thesis]. Montana State University.
  • Borazjani I, Sotiropoulos F. 2009. Numerical Investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J Exp Biol. 212(Pt 4):576–592. doi: 10.1242/jeb.025007.
  • Brosnan IG, Welch DW. 2020. A model to illustrate the potential pairing of animal biotelemetry with individual‑based modeling. Anim Biotelemetry 8(36):1–17. doi: 10.1186/s40317-020-00221-z.
  • Coombs S. 1999. Signal detection theory, lateral-line excitation patterns and prey capture behaviour of mottled sculpin. Anim Behav. 58(2):421–430. doi: 10.1006/anbe.1999.1179.
  • DeAngelis DL. 1978. Model for the movement and distribution of fish in a body of water. Oak Ridge National Laboratory (ORNL/TM-6310). doi: 10.2172/7028099.
  • Domenici P, Hale ME. 2019. Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour. J Exp Biol. 222(18):jeb166009.
  • Fagan WF, Lewis MA, Auger-Méthé M, Avgar T, Benhamou S, Breed G, LaDage L, Schlägel UE, Tang W-W, Papastamatiou YP, et al. 2013. Spatial memory and animal movement. Ecol Lett. 16(10):1316–1329. doi: 10.1111/ele.12165.
  • Finger JS, Riesgraf AT, Zielinski DP, Sorensen PW. 2020. Monitoring upstream fish passage through a Mississippi River lock and dam reveals species differences in lock chamber usage and supports a fish passage model which describes velocity dependent passage through spillway gates. River Res Appl. 36(1):36–46. doi: 10.1002/rra.3530.
  • Gao Z, Andersson HI, Dai H, Jiang F, Zhao L. 2016. A new Eulerian–Lagrangian agent method to model fish paths in a vertical slot fishway. Ecol Eng. 88:217–225. doi: 10.1016/j.ecoleng.2015.12.038.
  • Gilmanov A, Zielinski DP, Voller VR, Sorensen PW. 2019. The effect of modifying a CFD-AB approach on fish passage through a model hydraulic dam. Water 11(9):1776. doi: 10.3390/w11091776.
  • Gisen DC, Schütz C, Weichert RB. 2022. Development of behavioral rules for upstream orientation of fish in confined space. Plos One 17(2):e0263964. doi: 10.1371/journal.pone.0263964.
  • Goodwin RA, Lai YG, Taflin DE, Smith DL, McQuirk J, Trang R, Reeves R. 2023. Predicting near-term, out-of-sample fish passage, guidance, and movement across diverse river environments by cognitively relating momentary behavioral decisions to multiscale memories of past hydrodynamic experiences. Front Ecol Evol. 11:703946. doi: 10.3389/fevo.2023.703946.
  • Goodwin RA, Nestler JM, Anderson JJ, Weber LJ, Loucks DP. 2006. Forecasting 3-D fish movement behavior using a Eulerian–Lagrangian–agent method (ELAM). Ecol Modell. 192(1-2):197–223. doi: 10.1016/j.ecolmodel.2005.08.004.
  • Goodwin RA, Politano M, Garvin JW, Nestler JM, Hay D, Anderson JJ, Weber LJ, Dimperio E, Smith DL, Timko M. 2014. Fish navigation of large dams emerges from their modulation of flow field experience. Proc Natl Acad Sci U S A. 111(14):5277–5282. doi: 10.1073/pnas.1311874111.
  • Goodwin RA. 2000. Simulating mobile populations in aquatic ecosystems [MS thesis]. University of Cornell.
  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, et al. 2006. A standard protocol for describing individual-based and agent-based models. Ecol. Modell. 198(1-2):115–126. doi: 10.1016/j.ecolmodel.2006.04.023.
  • Grimm V, Railsback SF. 2012. Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology. Philos Trans R Soc Lond B Biol Sci .367(1586):298–310. doi: 10.1098/rstb.2011.0180.
  • Gross ES, Holleman RC, Thomas MJ, Fangue NA, Rypel AL. 2021a. Development and evaluation of a Chinook salmon smolt swimming behavior model. Water 13(20):2904. doi: 10.3390/w13202904.
  • Gross ES, Korman J, Grimaldo LF, MacWilliams ML, Bever AJ, Smith PE. 2021b. Modeling Delta Smelt distribution for hypothesized swimming behaviors. San Franc Estuary Watershed Sci. 19(1):1–25.
  • Haefner JW, Bowen MD. 2002. Physical-based model of fish movement in fish extraction facilities. Ecol Modell. 152(2-3):227–245. doi: 10.1016/S0304-3800(02)00006-6.
  • Han R, Chen Q, Blanckaert K, Li W, Li R. 2013. Fish (Spinibarbus hollandi) dynamics in relation to changing hydrological conditions: physical modelling, individual-based numerical modelling, and case study. Ecohydrology 6(4):586–597. doi: 10.1002/eco.1388.
  • Herzog H, Klein B, Ziegler A. 2017. Form and function of the teleost lateral line revealed using three-dimensional imaging and computational fluid dynamics. J R Soc Interface. 14(130):20160898. doi: 10.1098/rsif.2016.0898.
  • Jacoby DMP, Piper AT. 2023. What acoustic telemetry can and can’t tell us about fish biology. J Fish Biol. 1–25. doi: 10.1111/jfb.15588.
  • Jager HI, DeAngelis DL. 2018. The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modelling of riverine fishes. Eco Modell. 384:341–352. doi: 10.1016/j.ecolmodel.2018.06.013.
  • Kemp PS, Armstrong JD, Gilvear DJ. 2005. Behavioural responses of juvenile Atlantic salmon (Salmo salar) to presence of boulders. River Res Appl. 21(9):1053–1060. doi: 10.1002/rra.864.
  • Kerr JR, Tummers JS, Benson T, Lucas MC, Kemp PS. 2023. Modelling fine scale route choice of upstream migrating fish as they approach an instream structure. Ecol Modell. 478:110210. doi: 10.1016/j.ecolmodel.2022.110210.
  • Klinard NV, Halfyard EA, Fisk AT, Stewart TJ, Johnson TB. 2018. Effects of surgically implanted acoustic tags on body condition, growth, and survival in a small, laterally compressed forage fish. Trans Am Fish Soc. 147(4):749–757. doi: 10.1002/tafs.10064.
  • Kopecki I, Schneider M, Hagele T. 2022. Chapter 6: Attraction flow and migration habitat assessment using an agent-based model In: Rutschmann P, Kampa E, Wolter C, Albayrak I, David L, Stoltz U, Scletterer, editors. Novel developments for sustainable hydropower. Cham (CH): Springer. p. 83–90.
  • Kulic T, Locar G, Kovacevic M, Filszar R. 2021. Application of agent-based modelling for selecting configuration of vertical slot fishway. Gradevinar 73(3):235–247.
  • Lacey RJ, Neary VS, Liao JC, Enders EC, Tritico HM. 2012. The IPOS framework: linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res Appl. 28(4):429–443. doi: 10.1002/rra.1584.
  • Leander J, Klaminder J, Jonsson M, Brodin T, Leonardsson K, Hellström G. 2020. The old and the new: evaluating performance of acoustic telemetry systems in tracking migrating Atlantic salmon (Salmo salar) smolt and European eel (Anguilla anguilla) around hydropower facilities. Can J Fish Aquat Sci. 77(1):177–187. doi: 10.1139/cjfas-2019-0058.
  • Lechner A, Keckeis H, Schludermann E, Humphries P, McCasker N, Tritthart M. 2014. Hydraulic forces impact larval fish drift in the free flowing section of a large European river. Ecohydrolpgy 7(2):648–658. doi: 10.1002/eco.1386.
  • Lemasson BH, Haefner JW, Bowen MD. 2008. The effect of avoidance behavior on predicting fish passage rates through water diversions structures. Ecol Modell. 219(1-2):178–188. doi: 10.1016/j.ecolmodel.2008.08.013.
  • Liao JC. 2007. A review of fish swimming mechanics and behavior in altered flows. Philos Trans R Soc Lond B Biol Sci. 362(1487):1973–1993. doi: 10.1098/rstb.2007.2082.
  • Lindberg DE, Leonardsson K, Lundqvist H. 2016. Path selection of Atlantic salmon (Salmo salar) migrating through a fishway. River Res Appl. 32(4):795–803. doi: 10.1002/rra.2909.
  • Long J, Fu S. 2022. Spatial learning of individual cichlid fish and its effect on group decision making. Animals 12(10):1318. doi: 10.3390/ani12101318.
  • Mallen-Cooper M, Brand DA. 2007. Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage? Fish Manage Ecol. 14(5):319–332. doi: 10.1111/j.1365-2400.2007.00557.x.
  • Mawer R, Pauwels IS, Bruneel SP, Goethals PLM, Kopecki I, Elings J, Coeck J, Schneider M. 2023. Individual based models for the simulation of fish movement near barriers: current work and future directions. J Environ Manage. 335:117538. doi: 10.1016/j.jenvman.2023.117538.
  • Mogdans J. 2019. Sensory ecology of the fish lateral-line system: morphological and physiological adaptations for the perception of hydrodynamic stimuli. J Fish Biol. 95(1):53–72. doi: 10.1111/jfb.13966.
  • Morrice KJ, Baptista AM, Burke BJ. 2020. Environmental and behavioral controls on juvenile Chinook salmon migration pathways in the Columbia River estuary. Ecol Modell. 427:109003. doi: 10.1016/j.ecolmodel.2020.109003.
  • Neill WH. 1979. Mechanisms of fish distribution in heterothermal environments. Am Zool. 19(1):305–317. doi: 10.1093/icb/19.1.305.
  • Nestler JM, Goodwin RA, Cole T, Degan D, Dennerline D. 2002. Simulating movement patterns of blueback herring in a stratified southern impoundment. Trans Am Fish Soc. 13(1):55–69.
  • Nestler JM, Goodwin RA, Smith DL, Anderson JJ, Li S. 2008. Optimum fish passage and guidance designs are based in the hydrogeomorphology of natural rivers. River Res Appl. 24(2):148–168. doi: 10.1002/rra.1056.
  • Odling-Smee L, Braithwaite VA. 2003. The role of learning in fish orientation. Fish Fish. 4(3):235–246. doi: 10.1046/j.1467-2979.2003.00127.x.
  • Olivetti S, Gil MA, Sridharan VK, Hein AM. 2021. Merging computational fluid dynamics and machine learning to reveal animal migration strategies. Methods Ecol Evol. 12(7):1186–1200. doi: 10.1111/2041-210X.13604.
  • Padgett TE, Thomas RE, Borman DJ, Mould DC. 2020b. Individual-based model of juvenile eel movement parametrized with computational fluid dynamics-derived flow fields informs improved fish pass design. R Soc Open Sci. 7(1):191505. doi: 10.1098/rsos.191505.
  • Padgett TE. 2020a. Development and application of individual-based models for predicting upstream passage of European fish [dissertation]. University of Leeds.
  • Patten BC. 1964. The rational decision process in salmon migration. J Constr Perm Int Explor Mer. 28(3):410–417. doi: 10.1093/icesjms/28.3.410.
  • Piper AT, Manes C, Siniscalchi F, Marion A, Wright RM, Kemp PS. 2015. Response of seaward-migrating European eel (Anguilla anguilla) to manipulated flow fields. Proc R Soc B. 282(1811):20151098. doi: 10.1098/rspb.2015.1098.
  • Plymesser K. 2014. Modeling fish passage and energy expenditure for American shad in a Steeppass fishway using a computational fluid dynamics model [Dissertation]. University of Montana.
  • Pope SB. 2000. Turbulent flows. Cambridge: Cambridge University Press.
  • Powalla D, Hoerner S, Cleynen O, Thévenin D. 2022. A numerical approach for active fish behavior modelling with a view toward hydropower plant assessment. Renewable Energy 188:957–966. doi: 10.1016/j.renene.2022.02.064.
  • Rossington K, Benson T. 2020. An agent-based model to predict fish collisions with tidal stream turbines. Renewable Energy 151:1220–1229. doi: 10.1016/j.renene.2019.11.127.
  • Saila SB, Shappy RA. 1963. Random movement and orientation in Salmon migration. ICES J Mar Sci. 28(1):153–166. doi: 10.1093/icesjms/28.1.153.
  • Scheibe TD, Richmond MC. 2002. Fish individual-based numerical simulator (FINS): a particle-based model of juvenile salmonid movement and dissolved gas exposure history in the Columbia River basin. Ecol Modell. 147(3):233–252. doi: 10.1016/S0304-3800(01)00424-0.
  • Silva AT, Bærum KM, Hedger RD, Baktoft H, Fjeldstad H, Gjelland KØ, Økland F, Forseth T. 2020. The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Sci Total Environ. 705:135773. doi: 10.1016/j.scitotenv.2019.135773.
  • Smith DL, Brannon EL, Odeh M. 2005. Response of juvenile Rainbow Trout to turbulence produced by prismatoidal shapes. Trans Am Fish Soc. 34(3):741–753. doi: 10.1577/T04-069.1.
  • Szabo-Meszaros M, Silva AT, Bærum KM, Baktoft H, Alfredsen K, Hedger RD, Økland F, Gjelland KØ, Fjeldstad H, Calles O, et al. 2021. Validation of a swimming direction model for the downstream migration of Atlantic Salmon smolts. Water 13(9):1230. doi: 10.3390/w13091230.
  • Tan J, Tao L, Gao Z, Dai H, Shi X. 2018. Modeling fish movement trajectories in relation to hydraulic response relationships in an experimental fishway. Water 10(11):1511. doi: 10.3390/w10111511.
  • Tonina D, Jorde K. 2013. Approaches for ecohydraulic studies: 3D, 2D, 1D and non-numerical models In: Maddock I, Harby A, Kemp P, Wood P, editors. Ecohydraulics: an integrated approach. Oxford (UK): John Wiley & Sons. p. 31–74.
  • Tullos D, Walter C, Dunham J. 2016. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile Coho salmon? Water Resour Res. 52(8):5938–5950. doi: 10.1002/2015WR018501.
  • Webb JF. 2014. Lateral line morphology and development and implications for the ontogeny of flow In: Bleckmann H, Coombs SL, editors. Flow sensing in air and water. New York (NY): Springer. p. 247–270.
  • Webb PW, Cotel AJ. 2010. Turbulence: does vorticity affect the structure and shape of body and fin propulsors. Integr Comp Biol. 50(6):1155–1166. doi: 10.1093/icb/icq020.
  • Whitty JM, Riesgraf AT, Zielinski DP, Sorensen PW. 2022. Movements of a model fish, the common carp, through a generic Mississippi River lock and dam demonstrate how fish swimming performance, behavior, and discharge-driven flow-fields determine fish passage rates in ways that can be predicted and modified using fish passage models. River Res Appl. 38(4):670–683. doi: 10.1002/rra.3942.
  • Willis J, Teague NN. 2014. Modelling fish in hydrodynamic models: an example using the Severn Barrage SEA In: Turnpenny AWH, Horsfield RA, editors. International fish screening techniques. Southampton (UK): WIT Press. p. 179–190.
  • Willis J. 2011. Modelling swimming aquatic animals in hydrodynamic models. Ecol Modell. 222(23-24):3869–3887. doi: 10.1016/j.ecolmodel.2011.10.004.
  • Zens B, Glas M, Tritthart M, Habersack H, Keckeis H. 2018. Movement patterns and rheoreaction of larvae of a fluvial specialist (nase, Chondrostoma nasus): the role of active versus passive components of behaviour in dispersal. Can J Fish Aquat Sci. 75(2):193–200. doi: 10.1139/cjfas-2016-0276.
  • Zhu L, Li J, Deng Y, Liao B, Liao L, An R. 2021. Based on a biological particle model to predict the trace behavior of fish. Water Supply. 21(8):4044–4057. doi: 10.2166/ws.2021.159.
  • Zielinski DP, Voller VR, Sorensen PW. 2018. A physiologically inspired agent-based approach to model upstream passage of invasive fish at a lock-and-dam. Ecol Modell. 382:18–32. doi: 10.1016/j.ecolmodel.2018.05.004.