524
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Ball convergence of a novel Newton-Traub composition for solving equations

& ORCID Icon | (Reviewing Editor)
Article: 1155333 | Received 19 Oct 2015, Accepted 15 Feb 2016, Published online: 08 Mar 2016

References

  • Amat, S., Busquier, S., & Gutiérrez, J. M. (2003). Geometric constructions of iterative functions to solve nonlinear equations. Journal of Computational and Applied Mathematics, 157, 197–205.
  • Argyros, I. K. (1985). Quadratic equations and applications to Chandrasekhar’s and related equations. Bulletin of the Australian Mathematical Society, 32, 275–292.
  • Argyros, I. K. (2004). A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. Journal of Mathematical Analysis and Applications, 298, 374–397.
  • Argyros, I. K. (2007). In C. K. Chui & L. Wuytack (Eds.), Computational theory of iterative methods ( Studies in Computational Mathematics, p. 15). New York: Elsevier.
  • Argyros, I. K., & Chen, D. (1993). Results on the Chebyshev method in Banach spaces. Proyecciones, 12, 119–128.
  • Argyros, I. K., & Hilout, S. (2012). Weaker conditions for the convergence of Newton’s method. Journal of Complexity, 28, 364–387.
  • Argyros, I. K., & Hilout, S. (2013). Numerical methods in nonlinear analysis. Hackensack, NJ: World Scientific.
  • Candela, V., & Marquina, A. (1990). Recurrence relations for rational cubic methods II: The Chebyshev method. Computing, 45, 355–367.
  • Chun, C., Stanica, P., & Neta, B. (2011). Third order family of methods in Banach spaces. Computers and Mathematics with Applications, 61, 1665–1675.
  • Guti\’errez, J. M., & Hern\’andez, M. A. (1998). Recurrence relations for the super-Halley method. Computers & Mathematics with Applications, 36, 1–8.
  • Hern\’{a}ndez, M. A. (2001). Chebyshev’s approximation algorithms and applications. Computers & Mathematics with Applications, 41, 433–455.
  • Hern{\’a}ndez, M. A. (2000). Second-derivative-free variant of the Chebyshev method for nonlinear equations. Journal of Optimization Theory and Applications, 104, 501–515.
  • Hernández, M. A. & Salanova, M. A. (2000). Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method. Journal of Computational and Applied Mathematics, 126, 131–143.
  • Hueso, J. L., Martinez, E., & Tervel, C. (2015). Convergence, efficiency and dynemics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics, 275, 412–420.
  • Kantorovich, L. V., & Akilov, G. P. (1982). Functional analysis. Oxford: Pergamon Press.
  • Magre{\~n}{\’a}n, {\’A}. A. (2013). Estudio de la dinámica del método de Newton amortiguado (PhD Thesis). Servicio de Publicaciones, Universidad de La Rioja. Retrieved from http://dialnet.unirioja.es/servlet/tesis?codigo=38821
  • Petkovic, M. S., Neta, B., Petkovic, L., & D\v{z}uni\v{c}, J. (2013). Multipoint methods for solving nonlinear equations. Waltham, MA: Elsevier.
  • Rheinboldt, W. C. (1978). An adaptive continuation process for solving systems of nonlinear equations. In A. N. Tikhonov, et al. (Ed.), Mathematical models and numerical methods (Vol. 3, pp. 129–142). Warsaw: Banach Center.
  • Sharma, J. R. (2014). Some fifth and sixth order iterative methods for solving nonlinear equations. International Journal of Engineering Research and Applications, 4, 268–273.
  • Traub, J. F. (1964). Iterative methods for the solution of equations (Series in Automatic Computation). Englewood Cliffs, NJ: Prentice- Hall.
  • Wang, X., & Kou, J. (2013). Semilocal convergence and R-order for modified Chebyshev--Halley methods. Numerical Algorithms, 64, 105–126.