647
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Probability density and stochastic stability for the coupled Van der Pol oscillator system

& ORCID Icon | (Reviewing Editor)
Article: 1431092 | Received 19 May 2017, Accepted 12 Jan 2018, Published online: 12 Feb 2018

References

  • Ariaratnam, S. T., & Xie, W. C. (1994). Almost-sure stochastic stability of coupled non-linear oscillators. International Journal of Non-Linear Mechanics, 29, 197–204.10.1016/0020-7462(94)90038-8
  • Ariaratnam, S. T., & Xie, W. C. (1992). Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitation. ASME Journal of Applied Mechanics, 59, 664–673.10.1115/1.2893775
  • Arnold, L. (1998). Random dynamical systems. Berlin: Springer.10.1007/978-3-662-12878-7
  • Arnold, L., & Papanicolaou, G. (1986). Asympototic analysis of the Lyapunov exponents and rotation numbers of the random oscillator and applications, SIAM. Journal of Applied Mathematics, 46, 427–450.
  • Caughey, T. K., & Ma, F. (1982a). The exact steady-state solution of a class of non-linear stochastic systems. International Journal of Non-Linear Mechanics, 17, 137–142.10.1016/0020-7462(82)90013-0
  • Caughey, T. K., & Ma, F. (1982b). The steady-state response of a class of dynamical systems to stochastic excitation. Journal of Applied Mechanics, 49, 629–632.10.1115/1.3162538
  • Caughey, T. K., & Payne, H. J. (1967). On the response of a class of self-excited oscillators to stochastic excitation. International Journal of Non-Linear Mechanics, 2, 125–151.10.1016/0020-7462(67)90010-8
  • Deng, M. L., & Zhu, W. Q. (2015). Stochastic averaging of quasi-non-integrable Hamiltonian systems under fractional Gaussian noise excitation. Nonlinear Dynamics, 83, 1015–1027.
  • Doyle, M. M., & Namachchivaya, N. S (1994). Almost-sure asymptotic stability of a general four-dimensional system driven by real noise. Journal of Statistical Physics, 75, 525–552.10.1007/BF02186871
  • Itô, K. (1951). On stochastic differential equations memoris. American Mathmatical society, 4, 1–51.
  • Khasminskii, R. Z. (1967). Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory of probability and application, 11, 144–147.10.1137/1112019
  • Khasminskii, R. Z. (1968). On the averaging principle for Itô stochastic differential equations. Kibernetka, 3, 260–279.
  • Li, S. H., & Liu, X. B. (2012). The maximal Lyapunov exponent of a co-dimension two-bifurcation system excited by a bounded noise. Acta Mechanica Sinica, 28, 511–519.10.1007/s10409-012-0013-y
  • Lin, Y. K., & Cai, G. Q. (1995). Probabilistic structural dynamics. Advanced theory and applications. New York, NY: McGraw-Hill.
  • Liu, X. B., & Liew, K. M. (2004). The maximal Lyapunov exponent for a three-dimension stochastic system, ASME. Journal of Applied Mechanics, 71, 677–690.
  • Liu, W. Y., & Zhu, W. Q. (2013). Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises. Probabilistic Engineering Mechanics, 32, 39–47.
  • Liu, W. Y., & Zhu, W. Q. (2014). Stochastic stability of quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises. International Journal of Non-Linear Mechanics, 77, 52–62.10.1016/j.ijnonlinmec.2014.08.003
  • Liu, W. Y., & Zhu, W. Q. (2015). Lyapunov function method for analyzing stability of quasi-Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Nonlinear Dynamics, 81, 1–15.
  • Mitchell, P. R., & Kozin, F. (1974). Sample stability of second order linear differential equations with wide band noise coefficients, SIAM. Journal of Applied Mathematics, 27, 571–605.
  • Namachchivaya, N. S., Vedula, L., & Onu, K. (2011). Stochastic stability of coupled oscillators with one asymptotically stable and one critical mode. Journal of Applied Mechanics, 78, 2388–2399.
  • Nishoka, K. (1976). On the stability of two-dimensional linear stochastic systems. Kodai Mathematical Seminar Reports, 27, 211–230.
  • Zhao, Y. P. (2015). An improved energy envelope stochastic averaging method and its application to a nonlinear oscillator. Journal of Vibration and Control, 21, 1–12.
  • Zhu, W. Q., Cai, G. Q., & Lin, Y. K. (1990). On exact stationary solutions of stochastically perturbed Hamiltonian systems. Probabilistic Engineering Mechanics, 5, 84–89.10.1016/0266-8920(90)90011-8
  • Zhu, W. Q., Cai, G. Q., & Lin, Y. K. (1992). Stochastically perturbed haniltonian systems nonlinear stochastic mechanics, proceedings of IUTAM symposium (pp. 543–552). Berlin: Springer-Verlag.
  • Zhu, W. Q., Huang, Z. L., & Suzuki, Y. (2001a). Response and stability of strongly nonlinear oscillators under wide band random excitation. International Journal of Non-Linear Mechanics, 36, 1235–1250.10.1016/S0020-7462(00)00093-7
  • Zhu, W. Q., Huang, Z. L., & Suzuki, Y. (2001b). Exact stationary solutions of stochastically excited and dissipated partially integrable Hamiltonian systems. International Journal of Non-Linear Mechanics, 36, 39–48.10.1016/S0020-7462(99)00086-4
  • Zhu, W. Q., Huang, Z. L., & Suzuki, Y. (2002). Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems. International Journal of Non-Linear Mechanics, 37, 419–437.10.1016/S0020-7462(01)00018-X
  • Zhu, W. Q., Huang, Z. L., & Yang, Y. Q. (1997). Stochastic averaging of quasi-integrable Hamiltonian systems. Journal of Applied Mechanics, 64, 975–986.10.1115/1.2789009