2,076
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Reduction of pollution load of paper mill effluent by phytoremediation technique using water caltrop (Trapa natans L.)

& | (Reviewing Editor)
Article: 1153216 | Received 19 Oct 2015, Accepted 08 Feb 2016, Published online: 10 Mar 2016

References

  • Ajibade, F. O., Adeniran, K. A., & Egbuna, C. K. (2013). Phytoremediation efficiencies of water hyacinth in removing heavy metals in domestic sewage (A Case Study of University of Ilorin, Nigeria). The International Journal of Engineering and Science, 2, 16–27.
  • Alade, G. A., & Ojoawo, S. O. (2009). Purification of domestic sewage by water hyacinth (Eichhornia crassipes). International Journal of Environmental Technology and Management, 10, 286–294.10.1504/IJETM.2009.023735
  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91, 869–881.10.1016/j.chemosphere.2013.01.075
  • Allinson, G., Nishikawa, M., De Silva, S. S., Laurenson, L. J. B., & De Silva, K. (2002). Observations on metal concentrations in tilapia (oreochromis mossambicus) in reservoirs of south Sri Lanka. Ecotoxicology and Environmental Safety, 51, 197–202.10.1006/eesa.2001.2112
  • Mojiri, A. (2011). Phytoremediation of heavy metals from municipal wastewater by Typhado mingensis. African Journal of Microbiology Research, 6, 643–647.
  • American Public Health Association. (2012). Standard methods for the examination of water and waste water (21st ed.). Washington, DC: Author.
  • Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumlator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In N. Terry, & G. Bañuelos (Eds.), Phytoremediation of Contaminated Soil and Water (pp. 85–108). Boca Raton, FL: Lewis.
  • Brooks, R. R., Robinson, B. H., Howes, A. W., & Chiarucci, A. (2001). An evaluation of Berkheya coddii Roessler and Alyssum bertolonii Desv. for phytoremediation and phytomining of nickel. South African Journal of Science, 97, 558–560.
  • Chandra Sekhar, K., Kamala, C. T., Chary, N. S., Balaram, V., & Garcia, G. (2005). Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere, 58, 507–514.10.1016/j.chemosphere.2004.09.022
  • Chaney, R. L., Li, Y. M., Brown, S. L., Homer, F. A., & Malik, M. (2000). Improving metal hyper accumulator wild plants to commercial phytoextraction systems: Approaches and progress. In N. Terry, & G. Bañuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 129–158). Boca Raton, FL: Lewis.
  • Dar, S. H., Kumawat, D. M., Singh, N., & Wani, K. A. (2011). Sewage treatment potential of water hyacinth (Eichhornia crassipes). Research Journal of Environmental Sciences, 5, 377–385.10.3923/rjes.2011.377.385
  • Kulkarni, B. V., Ranade, S. V., & Wasif, A. L. (2008). Phytoremediation of textile effluent by using water hyacinth: A polishing treatment. International Journal of Environment Management and Technology, 5, 18–27.
  • Kumar, V., & Chopra, A. K. (2014). Ferti-irrigation effect of paper mill effluent on agronomical practices of phaseolus vulgaris (l.) in two seasons. Communications in Soil Science and Plant Analysis, 45, 2151–2170.10.1080/00103624.2014.929698
  • Kumar, V., & Chopra, A. K. (2015). Fertigation with agro-residue-based paper mill effluent on a high-yield spinach variety. International Journal of Vegetable Science, 21, 69–97.10.1080/19315260.2013.825690
  • Kutty, S. R. M., Ngatenah, S. N. I., Isa, M. H., & Malakahmad, A. (2009). Nutrients removal from municipal wastewater treatment plant effluent using Eichhorina crassipes. World Academic Science Engineering and Technology, 60, 826–831.
  • Letachowicz, B., Krawczyk, J., & Klink, A. (2006). Accumulation of heavy metals in organs of Typha latifolia. Polish Journal of Environmental Studies, 15, 407–409.
  • Liao, S. W., & Chang, W. L. (2004). Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Journal of Aquatic Plant Management, 42, 60–68.
  • Lone, M. I., He, Z. L., Stoffella, P. J., & Yang, X. E. (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University SCIENCE B, 9, 210–220.10.1631/jzus.B0710633
  • Luqman, M., Butt, T., Tanvir, A., Atiq, M., Hussan, M. Z. Y., & Yaseen, M. (2013). Phytoremediation of polluted water by trees: A review. International Journal of Agricultural Research and Reviews, 1, 022–025.
  • Mahmood, Q., Zheng, P., Islam, E., Hayat, Y., Hassan, M. J., Jilani, G., & Jin, R. C. (2005). Lab scale studies on water hyacinth (Eichhornia crassipes Marts Solms) for biotreatment of textile wastewater. Caspian Journal of Environmental Sciences, 3, 83–88.
  • Meagher, R. B., Rugh, C. L., Kandasamy, M. K., Gragson, G., & Wang, N. J. (2000). Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In N. Terry, & G. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 201–221). Boca Raton, FL: Lewis.
  • Memon, A. R., & Schröder, P. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16, 162–175.10.1007/s11356-008-0079-z
  • Padmapriya, G., & Murugesan, A. G. (2012). Phytoremediation of various heavy metals (Cu, Pb and Hg) from aqueous solution using water hyacinth and its toxicity on plants. International Journal of Environmental Biology, 2, 97–103.
  • Palmer, E. F., Warwick, F., & Keller, W. (2001). Brassicaceae (cruciferae) family, plant biotechnology, and phytoremediation. International Journal of Phytoremediation, 3, 245–287.10.1080/15226510108500059
  • Pehlivan, E., Özkan, A. M., Dinç, S., & Parlayici, Ş. (2009). Adsorption of Cu2+ and Pb2+ ion on dolomite powder. Journal of Hazardous Materials, 167, 1044–1049.10.1016/j.jhazmat.2009.01.096
  • Pilon-Smits, E. A. H., & Pilon, M. (2002). Phytoremediation of metals using transgenic plants. Critical Reviews in Plant Sciences, 21, 439–456.10.1080/0735-260291044313
  • Pollard, A. J., Powell, K. D., Harper, F. A., & Smith, J. A. C. (2002). The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences, 21, 539–566.10.1080/0735-260291044359
  • Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 53–70). New York, NY: John Wiley & Sons.
  • Rohit, A. K., Vinayak H. L., & Avinash, B. (2015). Investigation of chromium phytoremediation and tolerance capacity of a weed, Portulaca oleracea L. in a hydroponic system. Water and Environment Journal, 10, 1111–12106.
  • Shah, R. A., Kumawat, D. M., Singh, N., & Wani, K. A. (2010). Water hyacinth (Eichhornia crassipes) as a remediation tool for dye effluent pollution. International Journal Science and Nature, 1, 172–178.
  • Singh, D., Tiwari, Archana, & Gupta, Richa (2012). Phytoremediation of lead from wastewater using aquatic plants. Journal of Agricultural Technology, 8, 1–11.
  • Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22, 27–42.10.1016/j.ecoleng.2004.01.004
  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M.. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, Article ID 939161. doi:10.1155/2011/939161