890
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Variations in microbiome composition of sewer biofilms due to ferrous and ferric iron dosing

, , & | (Reviewing editor)
Article: 1595293 | Received 11 Oct 2018, Accepted 11 Mar 2019, Published online: 08 Apr 2019

References

  • Achtnich, C., Bak, F., & Conrad, R. (1995). Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils, 19, 65–15. doi:10.1007/BF00336349
  • Apgar, D., & Witherspoon, J. (2007). Minimization of odors and corrosion in collection systems phase 1. Water Environment Research Foundation (WERF). London: IWA Publishing.
  • ASCE, 1989. Sulfide in wastewater collection and treatment systems ASCE (American Society of Civil Engineers) Manuals and Reports on Enginering Practice No. 69, New York, USA. New York, NY: American Society of Civil Engineers.
  • Boon, A. G. (1995). Septicity in sewers: Causes, consequences and containment. Water Science and Technology, 31, 237–253. doi:10.1016/0273-1223(95)00341-J
  • Briones, A., & Raskin, L. (2003). Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Current Opinion in Biotechnology, 14, 270–276. doi:10.1016/S0958-1669(03)00065-X
  • Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from illumina amplicon data. Nature Methods, 13, 581–583. doi:10.1038/nmeth.3869
  • Castro, H. F., Williams, N. H., & Ogram, A. (2000). Phylogeny of sulfate-reducing bacteria. FEMS Microbiology Ecology, 31, 1–9. doi:10.1016/S0168-6496(99)00071-9
  • Cha, I.-T., Min, U.-G., Kim, S.-J., Yim, K. J., Roh, S. W., & Rhee, S.-K. (2013). Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment. Antonie van Leeuwenhoek, 104, 1005–1012. doi:10.1007/s10482-013-0020-4
  • Cooper, D. C., Picardal, F. W., Schimmelmann, A., & Coby, A. J. (2003). Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200. Applied and Environmental Microbiology, 69, 3517–3525. doi:10.1128/AEM.69.6.3517
  • Davydov, A., Chuang, K. T., & Sanger, A. R. (1998). Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces. The Journal of Physical Chemistry, 102, 4745–4752. doi:10.1021/jp980361p
  • dos Santos Afonso, M., & Stumm, W. (1992). Reductive dissolution of iron(III) (Hydr)oxides by hydrogen sulfide. Langmuir, 8, 1671–1675. doi:10.1021/la00042a030
  • Dridi, B., Fardeau, M.-L., Ollivier, B., Raoult, D., & Drancourt, M. (2012). Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 62, 1902–1907. doi:10.1099/ijs.0.033712-0
  • Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., & Stackebrandt, E. (2006). The prokaryotes, a handbook on the biology of bacteria volume 2: Ecophysiology and biochemistry, third edit. ed, the prokaryotes. New York: Springer Science+Business Media, LLC. doi:10.1007/0-387-30741-9
  • Fernandez, A., Huang, S., Seston, S., Xing, J., Hickey, R., Criddle, C., & Tiedje, J. (1999). How stable is stable? Function versus community composition. Applied and Environmental Microbiology, 65, 3697–3704.
  • Ganigue, R., Gutierrez, O., Rootsey, R., & Yuan, Z. (2011). Chemical dosing for sulfide control in Australia: An industry survey. Water Research, 45, 6564–6574. doi:10.1016/j.watres.2011.09.054
  • Garrity, G. M. (2005). Bergey’s manual of systematic bacteriology - volume two: The proteobacteria (part C). 2nd ed. Boston, MA: Springer-Verlag US. doi:10.1007/0-387-29298-5
  • Guisasola, A., de Haas, D., Keller, J., & Yuan, Z. (2008). Methane formation in sewer systems. Water Research, 42, 1421–1430. doi:10.1016/j.watres.2007.10.014
  • Hvitved-Jacobsen, T., Vollertsen, J., & Nielsen, A. H. (2013). Sewer processes - microbial and chemical process engineering of sewer networks. Boca Raton, FL, USA: CRC press.
  • Isa, Z., Grusenmeyer, S., & Verstraete, W. (1986). Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Applied and Environmental Microbiology, 51, 580–587.
  • Jensen, H. S., Sekar, R., Shepherd, W. J., Osborn, A. M., Tait, S., & Biggs, C. A. (2016). Spatial and temporal variability of bacterial communities within a combined sewer system. Microbiologyopen, 5, 616–625. doi:10.1002/mbo3.356
  • Kiilerich, B., Kiilerich, P., Nielsen, A. H., & Vollertsen, J. (2018). Variations in activities of sewer biofilms due to ferrous and ferric iron dosing. Water Science and Technology : a Journal of the International Association on Water Pollution Research, 2017, 845–858. doi:10.2166/wst.2018.261
  • Kristjansson, J. K., Schönheit, P., & Thauer, R. K. (1982). Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate. Archives of Microbiology, 131, 278–282. doi:10.1007/BF00405893
  • Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31, 814–821. doi:10.1038/nbt.2676
  • Liu, Y., Ni, B.-J., Ganigué, R., Werner, U., Sharma, K. R., & Yuan, Z. (2015). Sulfide and methane production in sewer sediments. Water Research, 70, 350–359. doi:10.1016/j.watres.2014.12.019
  • Lomans, B. P., Maas, R., Luderer, R., Op Den Camp, H. J. M., Pol, A., van der Drift, C., & Vogels, G. D. (1999). Isolation and characterization of methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Applied and Envirnmental Microbiology, 65, 3641–3650.
  • Lonergan, D. J., Jenter, H. L., Coates, J. D., Phillips, E. J. P., Schmidt, T. M., & Lovley, D. R. (1996). Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. Journal of Bacteriology, 178, 2402–2408. doi:10.1128/jb.178.8.2402-2408.1996
  • Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiology and Molecular Biology Review, 55, 259–287
  • Lovley, D. R. (1993). Dissimilatory metal reduction. Annual Reviews in Microbiology, 47, 263–290. doi:10.1146/annurev.mi.47.100193.001403
  • Lovley, D. R., & Phillips, E. J. P. (1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Envirnmental Microbiology, 51, 683–689. doi:10.1080/01490458709385975
  • Lovley, D. R., & Phillips, E. J. P. (1987). Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Applied and Envirnmental Microbiology, 53, 2636–2641. doi:10.1016/j.ocecoaman.2011.09.006
  • Lovley, D. R., Roden, E. E., Phillips, E. J., & Woodward, J. (1993). Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geology, 113, 41–53. doi:10.1016/0025-3227(93)90148-O
  • McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8. doi:10.1371/journal.pone.0061217
  • Metcalf and Eddy. (2003). Wastewater engineering: Treatment and reuse (4th ed ed.). Boston: McGraw-Hill.
  • Mohanakrishnan, J., Sharma, K. R., Meyer, R. L., Hamilton, G., Keller, J., & Yuan, Z. (2009). Variation in biofilm structure and activity along the length of a rising main sewer. Water Environment Research, 81, 800–808. doi:10.2175/106143008X390771
  • Nielsen, A. H., Lens, P., Vollertsen, J., & Hvitved-Jacobsen, T. (2005). Sulfide-iron interactions in domestic wastewater from a gravity sewer. Water Research, 39, 2747–2755. doi:10.1016/j.watres.2005.04.048
  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., … Wagner, H. (2014). Vegan: Community ecology package. R package version 2.2-0 (pp. 10). Retrieved from http://CRAN.Rproject.org/package=vegan
  • Paulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 10, 1200–1202. doi:10.1038/nmeth.2658
  • Peter, H., Ylla, I., Gudasz, C., Romaní, A. M., Sabater, S., & Tranvik, L. J. (2011). Multifunctionality and diversity in bacterial biofilms. PloS one, 6, e23225. doi:10.1371/journal.pone.0023225
  • Poulton, S. W., Krom,, M. D., & Raiswell, R. (2004). A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochimica et cosmochimica acta, 68, 3703–3715. doi:10.1016/j.gca.2004.03.012
  • Purdy, K. J., Munson, M. A., Cresswell-Maynard, T., Nedwell, D. B., & Embley, T. M. (2003). Use of 16S rRNA-targeted oligonucleotide probes to investigate function and phylogeny of sulphate-reducing bacteria and methanogenic archaea in a UK estuary. FEMS Microbiology Ecology, 44, 361–371. doi:10.1016/S0168-6496(03)00078-3
  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Retrieved from https://www.R-project.org
  • Raskin, L., & Rittmann, B. E. (1996). Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Applied and Environmental Microbiology, 62, 3847–3857.
  • Rosenberg, E. (2014). The prokaryotes - other major lineages of bacteria and the archaea (4th ed.). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-38954-2
  • RStudio Team. (2016). RStudio: Integrated development for R. Boston, MA: RStudio, Inc. Retrieved from http://www.rstudio.com
  • Rudelle, E. A., Nielsen, A. H., Hvitved-Jacobsen, T., Jensen, H. S., & Vollertsen, J. (2016). Spatial variability of anaerobic processes and wastewater pH in force mains. Water Environment Research : a Research Publication of the Water Environment Federation, 88, 747–755. doi:10.2175/106143016X14609975747126
  • Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R. Bioinformatics, 27, 592–593. doi:10.1093/bioinformatics/btq706
  • von Canstein, H., Kelly, S., Li, Y., & Wagner-Döbler, I. (2002). Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Applied and Environmental Microbiology, 68, 2829–2837. doi:10.1128/AEM.68.6.2829
  • Wickham, H. (2009). ggplot2 - elegant graphics for data analysis (1st ed.). New York: Springer-Verlag. doi:10.1007/978-0-387-98141-3
  • Zhang, L., Keller, J., & Yuan, Z. (2009). Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Research, 43, 4123–4132. doi:10.1016/j.watres.2009.06.013