2,867
Views
33
CrossRef citations to date
0
Altmetric
Research article

Adsorption of chromium (III) from aqueous solution using vesicular basalt rock

, & | (Reviewing editor:)
Article: 1650416 | Received 14 Sep 2018, Accepted 23 Jul 2019, Published online: 16 Aug 2019

References

  • Agency for Toxic Substances and Disease Registry. (2012). A toxicological profile for chromium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Services. Retrieved from www.atsdr.cdc.gov
  • Aharoni, C., Sideman, S., & Hoffer, E. (1979). Adsorption of phosphate ions by collodion‐coated alumina. Journal of Chemical Technology and Biotechnology, 29(7), 404–18. doi:10.1002/jctb.503290703
  • Alemayehu, E., Bruhnb, S. T., & Lennartza, B. (2011). Adsorption behaviour of Cr (VI) onto macro and micro-vesicular volcanic rocks from water. Separation and Purification Technology, 78, 55–61. doi:10.1016/j.seppur.2011.01.020
  • Alemayehu, E., & Lennartz, B. (2009). Virgin volcanic rocks: Kinetics & equilibrium studies for the adsorption of cadmium from water. Journal of Hazardous Materials, 169, 395–401. doi:10.1016/j.jhazmat.2009.03.109
  • Alemayehu, E., & Lennartz, B. (2010). Adsorptive removal of nickel from water using volcanic rocks. Applied Geochemistry, 25(2010), 1596–1602. doi:10.1016/j.apgeochem.2010.08.009
  • Alemu, A., Lemma, B., Gabbiye, N., Alula, M. T., & Desta, M. T. (2018). Removal of chromium (VI) from aqueous solution using vesicular basalt: A potential low cost wastewater treatment system. Heliyon, 4(7), e00682. doi:10.1016/j.heliyon.2018
  • Allen, J. A., & Scaife, P. H. (1966). The Elovich equation and chemisorption kinetics. Australian Journal of Chemistry, 19(11), 2015–2023. doi:10.1071/CH9662015c
  • Anderson, R. A. (1989). Essentiality of chromium in humans. Science of the Total Environment, 86, 75–81. doi:10.1016/0048-9697(89)90196-4
  • Benedetti, M. F., Dia, A., Riotte, J., Chabaux, F., Gerard, M., Boulegue, J., … Ildefonse, P. (2003). Chemical weathering of basaltic lava flows undergoing extreme climatic conditions: The water geochemistry record. Chemical Geology, 201, 1–17. doi:10.1016/S0009-2541(03)00231-6
  • Bosco, S. M. D., Jimenez, R. S., & Carvalho, W. A. (2005). .Removal of toxic metals from wastewater by Brazilian natural scolecite. Journal of Colloid Interface Science, 281, 424–431. doi:10.1016/j.jcis.2004.08.060
  • Boyd, G. E., Adamson, A. W., & Myers, J. L. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1. Journal of the American Chemical Society, 69(11), 2836–2848. doi:10.1021/ja01203a066
  • Carlson, D. H., Plummer, C. C., & Hammersley, L. (2008). Physical Geology: Earth Revealed (9th ed.). New York, NY: McGraw-Hill.
  • Chen, Y. G., He, Y., Ye, W. M., Lin, C. H., Zhang, X. F., & Ye, B. (2012). Removal of chromium (III) from aqueous solutions by adsorption on bentonite from Gaomiaozi, China. Environmental Earth Sciences, 67, 1261–1268. doi:10.1007/s12665/-012-1569-3
  • Cheng, H., Zhou, T., Li, Q., Lu, L. A., & Lin, C. (2014). Anthropogenic Chromium Emissions in China from 1990 to 2009. PloS One, 9, 1–9. doi:10.1371/journal.pone.0087753
  • Dada, A. O., Adekola, F. A., & Odebunmi, E. O. (2017). Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chemistry, 3(1), 1351653. doi:10.1080/23312009.2017.1351653
  • Deng, B., & Stone, A. T. (1996). Surface-Catalyzed Chromium (VI) Reduction: The TiO2−Cr (VI) - Mandelic Acid System. Environmental Science and Technology, 30, 463–472. doi:10.1021/es950156c
  • Elmola, E. S., Hamdy, W., Kassem, A., & Hady, A. A. (2016). Comparison of different rice straw based adsorbents for chromium removal from aqueous solutions. Desalination and Water Treatment, 57, 6991–6999. doi:10.1080/1944994.2015.1015175
  • Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385–470.
  • Gad, C. S. (1989). Acute and chronic systemic chromium toxicity. Science of the Total Environment, 86, 149–157. doi:10.1016/0048-9697(89)90201-5
  • Gonzalez, R. M., Edwards, T. E., Lorbiecke, T. D., Winburn, R. S., & Webster, J. R. (2003). Analysis of geologic Materials using rietveld quantitative X-ray diffraction. Advanced X-ray Analysis, 46, 204e209.
  • Hall, K. R., Eagleton, L. C., Crivos, A. A., & Ermeulen, T. V. (1996). Pore and solid diffusion kinetics in a fixed bed adsorption under constant pattern conditions. Industrial & Engineering Chemistry Fundamentals, 5, 212–223. doi:10.1021/i160018a011
  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. doi:10.1016/S0032-9592(98)00112-5
  • Jang, H. M., Yoo, S., Choi, Y. K., Park, S., & Kan, E. (2018). Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresource Technology, 259, 24–31. doi:10.1016/j.biortech.2018.03.013
  • Khan, S. A., Rehman, R., & Khan, M. A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Management, 15, 271–282. doi:10.1016/0956-053X(95)00025-U
  • Koppelman, M. H., Emerson, A. B., & Dillard, J. G. (1980). Adsorbed Cr (III) on chlorite, illite, and kaolinite: An X- ray photoelectron spectroscopic study. Clays and Clay Minerals, 28, 119–124. doi:10.1346/CCMN.1980.0280207
  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283. doi:10.1016/S0269-7491(99)00168-2
  • Kurniawan, T. A., Chan, G. Y. S., Lo, W. H. A., & Babel, S. (2006). Physicochemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98. doi:10.1016/j.cej.2006.01.015
  • Kwon, J. S., Yun, S. T., Kim, S. O., Mayer, B., & Hutcheon, I. (2005). Sorption of Zn (II) in aqueous solution by scoria. Chemosphere, 60, 1416–1426. doi:10.1016/j.chemosphere.2005.01.078
  • Kyziol-Komosińska, J., Rosik-Dulewska, C., Dzieniszewska, A., Pajak, M., & Krzyzewska, I. (2014). Removal of Cr (III) ions from water and wastewater by sorption onto peats and clays occurring in an overburden of lignite beds in Central Poland. Environmental Protection Engineering, 40, 5–22. doi:10.5277/epe140101
  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handingarl, 24(4), 1–39.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical. Society, 40, 1361–1403. doi:10.1021/ja02242a004
  • Lazarevic, S., Jankovic-Castvan, I., Jovanovic, D., Milonjic, S., Janackovic, D., & Petrovic, R. (2007). Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Applied Clay Science, 37, 47–57. doi:10.1010.1016/j.clay.2006.11.008
  • Leyva-Ramos, R., Fuentes-Rubio, L., Guerrero-Coronado, R. M., & Mendoza-Barron, J. (1995). Adsorption of trivalent chromium from aqueous solutions onto activated carbon. Journal of Chemical Technology & Biotechnology, 62, 64–67. doi:10.1002/jctb.280620110
  • Liu, J., Wu, X., Hu, Y., Dai, C., Peng, Q., & Liang, D. (2016). Effects of Cu (II) on the adsorption behaviours of Cr (III) and Cr (VI) onto kaolin. Journal of Chemistry. doi:10.1155/2016/3069754
  • Maia, A. Á. B., Angélica, R. S., de Freitas Neves, R., Pöllmann, H., Straub, C., & Saalwaechter, K. (2014). Use of 29Si and 27Al MAS NMR to study thermal activation of kaolinites from Brazilian Amazon kaolin wastes. Applied Clay Science, 87, 189–196. doi:10.1016/j.clay.2013.10.028
  • Michalski, J. R., Kraft, M. D., Sharp, T. G., & Christensen, P. R. (2006). Effects of chemical weathering on infrared spectra of Columbia River basalt and spectral interpretations of Martian alteration. Earth planet. Science Letter, 248(3–4), 822e829.
  • Mohan, D., & Singh, K. P. (2002). Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Research, 36, 2304–2318. doi:10.1016/S0043-1354(01)00447-X
  • Morgan-Sagastume, J. M., & Noyola, A. (2008). Evaluation of an aerobic submerged filter packed with volcanic scoria. Bioresource Technology, 99(7), 2528–2536. doi:10.1016/j.biortech.2007.04.068
  • Mthombeni, N. H., Onyango, M. S., & Aoyi, O. (2015). Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. Journal of Taiwan Institute of Chemical Engineering, 50, 242–251. doi:10.1016/j.jtice.2014.12.037
  • Nethaji, S., Sivasamy, A., & Mandal, A. B. (2013). Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. International Journal of Environmental Science and Technology, 10(2), 231–242. doi:10.1007/s13762-012-0112-0
  • Ohlin, L., Bazin, P., Thibault-Starzyk, F., Hedlund, J., & Grahn, M. (2013). Adsorption of CO2, CH4, and H2O in zeolite ZSM-5 studied using in situ ATR-FTIR spectroscopy. The Journal of Physical Chemistry C, 117(33), 16972–16982. doi:10.1021/jp4037183
  • Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, S1445–S1451. doi:10.1016/j.arabjc.2013.04.021
  • Rai, D., Sass, B. M., & Moore, D. A. (1987). Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorganic Chemistry, 26, 345–349. doi:10.1021/ic00250a002
  • Reichenberg, D. (1953). Properties of ion-exchange resins in relation to their structure. III. Kinetics of Exchange. Journal of the American Chemical Society, 75(3), 589–597.
  • Riemsdijk, W. H. V., Koopal, L. K., & Hiemstra, T. (2006). Adsorption of humic substances on goethite: Comparison between humic acids and fulvic acids. Environmental Science and Technology, 40, 7494–7500. doi:10.1021/es060777d
  • Rodrigues, L. A., Maschio, L. J., Silva, R. E., & Silva, M. L. (2010). Adsorption of Cr (VI) from aqueous solution by hydrous zirconium oxide. Journal of Hazardous Materials, 173, 630–636. doi:10.1016/j.jhazmat.2009.08.131
  • Saikia, N. J., Bharali, D. J., Sengupta, P., Bordoloi, D., Goswamee, R. L., Saikia, P. C., & Borthakur, P. C. (2003). Characterization, beneficiation and utilization of kaolinite clay from Assam, India. Applied Clay Science, 24(1–2), 93–103. doi:10.1016/S0169-1317(03)00151-0
  • Seetha, D., & Velraj, G. (2016). Characterization and chemometric analysis of ancient pot shards trenched from Arpakkam, Tamil Nadu, India. Journal of Applied Research and Technology, 14(5), 345–353. doi:10.1016/j.jart.2016.08.002
  • Sekomo, C. B., Rousseau, D. P. L., & Lens, P. N. L. (2012). .Use of Gisenyi volcanic rock for adsorptive removal of Cd (II), Cu (II), Pb (II), and Zn (II) from wastewater. Water Air Soil Pollution, 223, 533–547. doi:10.1007/s11270-011-0880-z
  • Sheng, G., Li, Y., Yang, X., Ren, X., Yang, S., Hu, J., & Wang, X. (2012). Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Advances, 2, 12400–12407. doi:10.1039/C2RA21623J
  • Soubrand-Colin, M., Bril, H., Neel, C., Courtin-Nomade, A., & Martin, F. (2005). Weathering of basaltic rocks from the French Massif Central: Origin and fate of Ni, Cr, Zn and Cu. The Canadian Mineralogist, 43, 1077–109114. doi:10.2113/gscanmin.43.3.1077
  • Strawn, D. G., & Sparks, D. L. (1999). The use of XAFS to distinguish between-inner and outer-sphere lead adsorption complexes on montmorillonite. Journal of Colloid and Interface Science, 216(2), 257–269. https://doi.org/10.1006/jcis.1999.6330
  • Tadesse, S., Milesi, J. P., & Deschamps, Y. (2003). Geology and mineral potential of Ethiopia: A note on geology and mineral map of Ethiopia. Journal of African Earth Sciences, 36, 273–313. doi:10.1016/S0899-5362(03)00048-4
  • Temkin, M. J., & Pyzhev, V. (1940). Recent modifications to Langmuir Isotherms. Acta Physiochim, 12, 217–222.
  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.
  • Wittbrodt, P. R., & Palmer, C. D. (1995). Reduction of Cr (VI) in the presence of excess soil fulvic acid. Environmental Science and Technology, 29, 255–263. doi:10.1021/es00001a033
  • Zewdu, F., & Amare, M. (2018). Determination of the level of hexavalent, trivalent, and total chromium in the discharged effluent of Bahir Dar tannery using ICP-OES and UV–Visible spectrometry. Cogent Chemistry, 4(1), 1534566. doi:10.1080/23312009.2018.1534566