3,088
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Immobilised apple peel bead biosorbent for the simultaneous removal of heavy metals from cocktail solution

, , & ORCID Icon | (Reviewing editor)
Article: 1673116 | Received 22 Jul 2019, Accepted 22 Sep 2019, Published online: 07 Oct 2019

References

  • Abas, S. N. A., Ismail, M. H. S., Siajam, S. I., & Kamal, M. L. (2015). Development of novel adsorbent-mangrove-alginate composite bead (MACB) for removal of Pb (II) from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 50, 182–24. doi:10.1016/j.jtice.2014.11.013
  • Acharya, J., Kumar, U., & Rafi, P. M. (2018) Removal of Heavy metal ions from wastewater by chemically modified agricultural waste material as potential adsorbent-a review. International Journal of Current Engineering and Technology, 8(3), 526–530.
  • Afroze, S., & Sen, T. K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air, & Soil Pollution, 229(7), 225.
  • Aichour, A., Zaghouane-Boudiaf, H., Iborra, C. V., & Polo, M. S. (2018). Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. Journal of Molecular Liquids, 256, 533–540. doi:10.1016/j.molliq.2018.02.073
  • Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Reviews, 4, 37–59. doi:10.1002/cben.201600010
  • Banerjee, M., Basu, R. K., & Das, S. K. (2018). Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility. Process Safety and Environmental Protection, 116, 693–702. doi:10.1016/j.psep.2018.03.037
  • Banerjee, S., Banerjee, A., & Sarkar, P. (2018). Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads. Journal of Environmental Science and Health, Part A, 53, 436–442. doi:10.1080/10934529.2017.1409009
  • Barbier, O., Jacquillet, G., Tauc, M., Cougnon, M., & Poujeol, P. (2005). Effect of heavy metals on, and handling by, the kidney. Nephron Physiology, 99, p105–p110. doi:10.1159/000083981
  • Basu, M., Guha, A. K., & Ray, L. (2018). Adsorption of cadmium on cucumber peel: Kinetics, isotherm and Co-ion effect. Indian Chemical Engineer, 60, 179–195. doi:10.1080/00194506.2017.1341349
  • Beidokhti, M. Z., Naeeni, S. T. O., & AbdiGhahroudi, M. S. (2019). Biosorption of Nickel (II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent. Civil Engineering Journal, 5, 447–457. doi:10.28991/cej-2019-03091259
  • Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2013). Cadmium (Cd(2+)) removal by nano zerovalent iron: Surface analysis, effects of solution chemistry and surface complexation modeling. Environmental Science and Pollution Research, 20, 6210–6221. doi:10.1007/s11356-013-1651-8
  • Chand, P., Bafana, A., & Pakade, Y. B. (2015a). Xanthate modified apple pomace as an adsorbent for removal of Cd (II), Ni (II) and Pb (II), and its application to real industrial wastewater. International Biodeterioration & Biodegradation, 97, 60–66. doi:10.1016/j.ibiod.2014.10.015
  • Chand, P., & Pakade, Y. B. (2013). Removal of Pb from water by adsorption on apple pomace: equilibrium, kinetics, and thermodynamics studies.Journal of Chemistry 2013, 1–9.
  • Chand, P., & Pakade, Y. B. (2015b). Utilization of chemically modified apple juice industrial waste for removal of Ni2+ ions from aqueous solution. Journal of Material Cycles and Waste Management, 17, 163–173. doi:10.1007/s10163-014-0236-z
  • Chatterjee, A., & Schiewer, S. (2014). Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns. Chemical Engineering Journal, 244, 105–116. doi:10.1016/j.cej.2013.12.017
  • Cheok, C. Y., Mohd Adzahan, N., Abdul Rahman, R., Zainal Abedin, N. H., Hussain, N., Sulaiman, R., & Chong, G. H. (2018). Current trends of tropical fruit waste utilization. Critical Reviews in Food Science and Nutrition, 58, 335–361. doi:10.1080/10408398.2016.1176009
  • Chidi, O., & Kelvin, R. (2018). Surface interaction of sweet potato peels (Ipomoea batata) with Cd (II) and Pb (II) ions in aqueous medium. Chemie International, 4, 221–229.
  • Ciesielczyk, F., Bartczak, P., Wieszczycka, K., Siwińska-Stefańska, K., Nowacka, M., & Jesionowski, T. (2013). Adsorption of Ni(II) from model solutions using co-precipitated inorganic oxides. Adsorption, 19, 423–434. doi:10.1007/s10450-012-9464-5
  • Da Silva Correia, I. K., Santos, P. F., Santana, C. S., Neris, J. B., Luzardo, F. H., & Velasco, F. G. (2018). Application of coconut shell, banana peel, spent coffee grounds, eucalyptus bark, piassava (Attalea funifera) and water hyacinth (Eichornia crassipes) in the adsorption of Pb2+ and Ni2+ ions in water. Journal of Environmental Chemical Engineering, 6, 2319–2334. doi:10.1016/j.jece.2018.03.033
  • Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., … Yan, Z. (2017). Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 506, 355–364. doi:10.1016/j.jcis.2017.07.069
  • Deng, S., Zhang, G., Wang, X., Zheng, T., & Wang, P. (2015). Preparation and performance of polyacrylonitrile fiber functionalized with iminodiacetic acid under microwave irradiation for adsorption of Cu(II) and Hg(II). Chemical Engineering Journal, 276, 349–357. doi:10.1016/j.cej.2015.04.043
  • Dho, N. Y., & Lee, S. R. (2003). Effect of temperature on single and competitive adsorptions of Cu(II) and Zn(II) onto natural clays. Environmental Monitoring and Assessment, 83, 177–203.
  • El-Wakil, A., El-Maaty, W . A., & Awad, F. (2014). Studies on biosorption of mercury (ii) from aqueous solution on nitric acid modified activated carbon prepared from water hyacinth. ABC Journal Of Advanced Research, 3(1), 51–71.
  • Enniya, I., Rghioui, L., & Jourani, A. (2018). Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustainable Chemistry and Pharmacy, 7, 9–16. doi:10.1016/j.scp.2017.11.003
  • Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616–645. doi:10.1016/j.jhazmat.2008.06.042
  • Foo, K., & Hameed, B. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10. doi:10.1016/j.cej.2009.09.013
  • Hadi, P., Barford, J., & McKay, G. (2013). Synergistic effect in the simultaneous removal of binary cobalt–Nickel heavy metals from effluents by a novel e-waste-derived material. Chemical Engineering Journal, 228, 140–146. doi:10.1016/j.cej.2013.04.086
  • Hassan, A., Abdel-Mohsen, A., & Fouda, M. M. (2014). Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydrate Polymers, 102, 192–198. doi:10.1016/j.carbpol.2013.10.104
  • Ho, Y., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76, 332–340. doi:10.1205/095758298529696
  • Ho, Y.-S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465. doi:10.1016/S0032-9592(98)00112-5
  • Husein, D. Z. (2013). Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel. Desalination and Water Treatment, 51(34–36), 6761–6769.
  • Ince, M., Ince, O. K., Yonten, V., & Karaaslan, N. M. (2016). Nickel, lead, and cadmium removal using a low-cost adsorbent-banana peel. Atomic Spectroscopy, 37, 125–130.
  • Irem, S., Islam, E., Khan, Q. M., Ul Haq, M. A., & Hashmat, A. J. (2017). Adsorption of arsenic from drinking water using natural orange waste: kinetics and fluidized bed column studies. Water science and Technology: Water Supply.
  • Jakóbik-Kolon, A., Bok-Badura, J., Karoń, K., Mitko, K., & Milewski, A. (2017). Hybrid pectin-based biosorbents for zinc ions removal. Carbohydrate Polymers, 169, 213–219. doi:10.1016/j.carbpol.2017.03.095
  • Jawad, R. J., Sha, M. H., Siajam, I., Ismail, M. H. S., & Siajam, S. I. (2016). Removal of heavy metals and C industrial wastewater by novel adsorbent of alginate and mang coated by chitosan. Journal of Purity, Utility Reaction and Environment, 5, 118–129.
  • Kandari, V., & Gupta, S. (2017). Bioconversion of vegetable and fruit peel wastes in viable product. Journal of Microbiology and Biotechnology Research, 2, 308–312.
  • Kede, C. M., Ndibewu, P. P., Kalumba, M. M., Panichev, N. A., Ngomo, H. M., & Ketcha, J. M. (2015). Adsorption of mercury (ii) onto activated carbons derived from theobroma cacao pod husk. South African Journal of Chemistry, 68, 226–235.
  • Khatoon, H., & Rai, J. P. N. (2016). Agricultural Waste Materials As Biosorbents For The Removal Of Heavy Metals And Synthetic Dyes-A Review. Octa Journal of Environmental Research, 4(3), 208–229.
  • Khiari, B., Wakkel, M., Abdelmoumen, S., & Jeguirim, M. (2019). Dynamics and kinetics of cupric ion removal from wastewaters by tunisian solid crude olive-oil waste. Materials, 12, 365. doi:10.3390/ma12030365
  • Kim, Y., Bae, J., Park, H., Suh, J.-K., You, Y.-W., & Choi, H. (2016). Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics. Water Research, 101, 187–194. doi:10.1016/j.watres.2016.04.077
  • Kołodyńska, D., Siek, M., Hubicki, Z., Grabarczyk, M., Skwarek, E., & Janusz, W. (2010). Chromium and Arsenic Removal in the Presence of Complexing Agent of New Generation. Paper presented at the 15th International Conference on Heavy Metals in the Environment, Gdansk (Poland).
  • Kratochvil, D., & Volesky, B. (1998). Advances in the biosorption of heavy metals. Trends in Biotechnology,16(7), 291–300.
  • Kumar, R., Kim, S.-J., Kim, K.-H., Lee, S.-H., Park, H.-S., & Jeon, B.-H. (2018). Removal of hazardous hexavalent chromium from aqueous phase using zirconium oxide-immobilized alginate beads. Applied Geochemistry, 88, 113–121. doi:10.1016/j.apgeochem.2017.04.002
  • Lai, Y.-L., Annadurai, G., Huang, F.-C., & Lee, J.-F. (2008). Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresource Technology, 99, 6480–6487. doi:10.1016/j.biortech.2007.11.041
  • Lee, S. H., Jung, C. H., Chung, H., Lee, M. Y., & Yang, J.-W. (1998). Removal of heavy metals from aqueous solution by apple residues. Process Biochemistry, 33, 205–211. doi:10.1016/S0032-9592(97)00055-1
  • Lee, S.-H., & Yang, J.-W. (1997). Removal of copper in aqueous solution by apple wastes. Separation Science and Technology, 32, 1371–1387. doi:10.1080/01496399708000966
  • Lessa, E. F., Medina, A. L., Ribeiro, A. S., & Fajardo, A. R. (2017). Removal of multi-metals fromwater using reusable pectin/cellulose microfibers composite beads. Arabian Journal of Chemistry https://doi.org/10.1016/j.arabjc.2017.07.011.
  • Li, S., Zeng, Z., & Xue, W. (2018). Adsorption of lead ion from aqueous solution by modified walnut shell: kinetics and thermodynamics. Environmental Technology 1–11. doi:10.1080/09593330.2018.1480664
  • Lugo-Lugo, V., Barrera-Díaz, C., Ureña-Núñez, F., Bilyeu, B., & Linares-Hernández, I. (2012). Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel.. Journal of Environmental Management, 112, 120–127. doi:10.1016/j.jenvman.2012.07.009
  • Mahamadi, C. (2019). On the dominance of Pb during competitive biosorption from multi-metal systems: A review. Cogent Environmental Science, 5(1), 1635335.
  • Mallampati, R., & Valiyaveettil, S. (2013). Apple peels—A versatile biomass for water purification? ACS Applied Materials & Interfaces, 5, 4443–4449. doi:10.1021/am400901e
  • Maranon, E., & Sastre, H. (1992a). Preconcentration and removal of trace metals from water by apple waste. Bioresource Technology, 40, 73–76. doi:10.1016/0960-8524(92)90122-E
  • Mashkoor, F., & Nasar, A. (2019). Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. Journal of Molecular Liquids, 274, 315–327. doi:10.1016/j.molliq.2018.10.119
  • Massimi, L., Giuliano, A., Astolfi, M., Congedo, R., Masotti, A., & Canepari, S. (2018). The effect of plasma pretreatment and cross-linking degree on the physical and antimicrobial properties of Nisin-Coated PVA films. Materials, 11, 334. doi:10.3390/ma11081451
  • Milani, P. A., Consonni, J. L., Labuto, G., Carrilho, E. N. V. M. (2018). Environ Sci Pollut Res, 25(36), 35906. https://doi.org/10.1007/s11356-018-1726-7
  • Mohamed, H. S., Soliman, N., Abdelrheem, D. A., Ramadan, A. A., Elghandour, A. H., & Ahmed, S. A. (2019). Adsorption of Cd2+ and Cr3+ ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent. Heliyon, 5, e01287. doi:10.1016/j.heliyon.2019.e01287
  • Mohan, D., & Chander, S. (2001). Single component and multi-component adsorption of metal ions by activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177, 183–196. doi:10.1016/S0927-7757(00)00670-1
  • Mondal, N. K., Samanta, A., Chakraborty, S., & Shaikh, W. A. (2018). Enhanced chromium(VI) removal using banana peel dust: Isotherms, kinetics and thermodynamics study. Sustainable Water Resources Management, 4, 489–497. doi:10.1007/s40899-017-0130-7
  • Mousa, N. E., Simonescu, C. M., Pătescu, R.-E., Onose, C., Tardei, C., Culiţă, D. C., … Lavric, V. (2016). Pb2+ removal from aqueous synthetic solutions by calcium alginate and chitosan coated calcium alginate. Reactive and Functional Polymers, 109, 137–150. doi:10.1016/j.reactfunctpolym.2016.11.001
  • Mudhoo, A., Garg, V. K., & Wang, S. (2012). Environmental chemistry for a sustainable world (pp. 379–442). Basal: Springer.
  • Neris, J. B., Luzardo, F. H. M., Da Silva, E. G. P., & Velasco, F. G. (2018). Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: a critical review.Chemical Engineering Journal, 357, 404–420.
  • Park, C. M., Han, J., Chu, K. H., Al-Hamadani, Y. A., Her, N., Heo, J., & Yoon, Y. (2017). Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: Experiment and modeling. Journal of Industrial and Engineering Chemistry, 48, 186–193. doi:10.1016/j.jiec.2016.12.038
  • Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2017). Fruit peel waste:Characterization and its potential uses. Current Science, 113, 1–11. doi:10.18520/cs/v113/i03/444-454
  • Paul, E., Nwoken, N., & Anumonye, F. (2018). Biosorption of heavy metals (Cd 2+, Cr 3+, Cu 2+, Ni2+, Pb 2+ And Zn2+) from aqueous solution onto activated carbon prepared from chicken feather. ATBU Journal of Science, Technology and Education, 6, 194–205.
  • Petrella, A., Spasiano, D., Acquafredda, P., De Vietro, N., Ranieri, E., Cosma, P., … Petruzzelli, D. (2018). Heavy metals retention (Pb(II), Cd(II), Ni(II)) from single and multimetal solutions by natural biosorbents from the olive oil milling operations. Process Safety and Environmental Protection, 114, 79–90. doi:10.1016/j.psep.2017.12.010
  • Petrovič, A., & Simonič, M. (2016). Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana. International Journal of Environmental Science and Technology, 13, 1761–1780. doi:10.1007/s13762-016-1015-2
  • Plazinski, W. (2010). Applicability of the film-diffusion model for description of the adsorption kinetics at the solid/solution interfaces. Applied Surface Science, 256, 5157–5163. doi:10.1016/j.apsusc.2009.12.083
  • Plazinski, W., Dziuba, J., & Rudzinski, W. (2013). Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption, 19, 1055–1064. doi:10.1007/s10450-013-9529-0
  • Raza, M. H., Sadiq, A., Farooq, U., Athar, M., Hussain, T., Mujahid, A., & Salman, M. (2015). Phragmites karka as a biosorbent for the removal of mercury metal ions from aqueous solution: Effect of modification. Journal of Chemistry, 2015, 1–12.
  • Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y., & Luo, C. (2016). Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate Polymers, 137, 402–409. doi:10.1016/j.carbpol.2015.11.002
  • Reynel-Avila, H. E., Mendoza-Castillo, D. I., Olumide, A. A., & Bonilla-Petriciolet, A. (2016). A survey of multi-component sorption models for the competitive removal of heavy metal ions using bush mango and flamboyant biomasses. Journal of Molecular Liquids, 224, 1041–1054. doi:10.1016/j.molliq.2016.10.061
  • Romero-Cano, L. A., García-Rosero, H., Gonzalez-Gutierrez, L. V., Baldenegro-Pérez, L. A., & Carrasco-Marín, F. (2017). Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. Journal of Cleaner Production, 162, 195–204. doi:10.1016/j.jclepro.2017.06.032
  • Sahmoune, M. N. (2018). Green adsorbents for pollutant removal (pp. 193–213). Basal: Springer.
  • Santana, A. J., Dos Santos, W. N., Silva, L. O., & Das Virgens, C. F. (2016). Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: Kinetics and adsorption equilibrium studies. Environmental Monitoring and Assessment, 188, 293. doi:10.1007/s10661-016-5266-7
  • Schwantes, D., Gonçalves, A. C., Coelho, G. F., Campagnolo, M. A., Dragunski, D. C., Tarley, C. R. T., … Leismann, E. A. V. (2016). Journal of Chemistry, 2016, 1–15. doi:10.1155/2016/3694174
  • Semerjian, L. (2018). Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: Equilibrium, kinetic, and thermodynamic studies. Environmental Technology & Innovation, 12, 91–103. doi:10.1016/j.eti.2018.08.005
  • Singh, L., Pavankumar, A. R., Lakshmanan, R., & Rajarao, G. K. (2012). Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent. Ecological Engineering, 38, 119–124. doi:10.1016/j.ecoleng.2011.10.007
  • Singh, R. J., Martin, C. E., & Rosengren, R. J. (2018). Biomedical postgraduate symposium (pp. 10). New Zealand: University of Otago.
  • Singh, S., & Shukla, S. R. (2017). Theoretical studies on adsorption of Ni (II) from aqueous solution using Citrus limetta peels. Environmental Progress & Sustainable Energy, 36(3), 864–872.
  • Song, D., Park, S.-J., Kang, H. W., Park, S. B., & Han, J.-I. (2013). Recovery of Lithium(I), Strontium(II), and Lanthanum(III) Using Ca–Alginate Beads. Journal of Chemical & Engineering Data, 58, 2455–2464. doi:10.1021/je400317v
  • Tan, K., & Hameed, B. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25–48.
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology (pp. 133–164). Basel: Springer.
  • Tejada-Tovar, C., González-Delgado, Á., & Villabona-Ortíz, Á. (2018). Adsorption Kinetics of Orange Peel Biosorbents for Cr (VI) Uptake from Water. Contemporary Engineering Sciences, 11(24), 1185–1193.
  • Tejada-Tovar, C., Villabona-Ortiz, Á., & Garcés-Jaraba, L. E. (2015). Kinetics of adsorption in mercury removal using cassava (manhiot esculenta) and lemon (Citrus limonum) wastes modified with citric acid. Ingeniería Y Universidad, 19(2), 283–298.
  • Van Thuan, T., Quynh, B. T. P., Nguyen, T. D., & Bach, L. G. (2017). Response surface methodology approach for optimization of Cu 2+, Ni 2+ and Pb 2+ adsorption using KOH-activated carbon from banana peel. Surfaces and Interfaces, 6, 209–217. doi:10.1016/j.surfin.2016.10.007
  • Vandenbossche, M., Jimenez, M., Casetta, M., & Traisnel, M. (2015). Remediation of heavy metals by biomolecules: A review. Critical Reviews in Environmental Science and Technology, 45, 1644–1704. doi:10.1080/10643389.2014.966425
  • Vu, H. C., Dwivedi, A. D., Le, T. T., Seo, S.-H., Kim, E.-J., & Chang, Y.-S. (2017). Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chemical Engineering Journal, 307, 220–229. doi:10.1016/j.cej.2016.08.058
  • Wang, R.-Z., Huang, D.-L., Liu, Y.-G., Zhang, C., Lai, C., Zeng, G.-M., … Luo, H. (2018). Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresource Technology, 261, 265–271. doi:10.1016/j.biortech.2018.04.032
  • Wang, S., Vincent, T., Faur, C., & Guibal, E. (2016). Alginate and algal-based beads for the sorption of metal cations: Cu(II) and Pb(II). International Journal of Molecular Sciences, 17, 1453. doi:10.3390/ijms17091453
  • Yasim, N. S. E. M., Ismail, Z. S., Zaki, S. M., & Azis, M. F. A. (2016). Adsorption of Cu, As, Pb and Zn by banana trunk. Malaysian Journal of Analytical Sciences, 20, 187–196. doi:10.17576/mjas
  • Zanin, E., Scapinello, J., de Oliveira, M., Rambo, C. L., Franscescon, F., Freitas, L., … Dal Magro, J. (2017). Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Safety and Environmental Protection, 105, 194–200. doi:10.1016/j.psep.2016.11.008
  • Zhao, L., Wang, J., Zhang, P., Gu, Q., & Gao, C. (2018). Absorption of Heavy Metal Ions by Alginate. Bioactive seaweeds for food applications (pp. 255–268). Amsterdam: Elsevier.