503
Views
1
CrossRef citations to date
0
Altmetric
EDUCATIONAL PSYCHOLOGY & COUNSELLING

Transforming dis-embodied mathematical representations into embodied representations, and vice versa: a two-way mechanism for understanding mathematics

, &
Article: 2154041 | Received 23 Mar 2022, Accepted 28 Nov 2022, Published online: 05 Dec 2022

References

  • Abrahamson, D., Nathan, M. J., Williams-Pierce, C., Walkington, C., Ottmar, E. R., Soto, H., & Alibali, M. W. (2020). The Future of embodied design for mathematics teaching and learning. Frontiers in Education, 5, 147. https://doi.org/10.3389/feduc.2020.00147
  • Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6), 1131–5. https://doi.org/10.1037/h0037361
  • Daar, M., & Pratt, J. (2008). Digits affect actions: The SNARC effect and response selection. Cortex, 44(4), 400–405. https://doi.org/10.1016/j.cortex.2007.12.003
  • Farsani, D., Lange, T., & Meaney, T. (2022). Gestures, Systemic Functional Grammar and Mathematics Education. Mind, Culture and Activity, 1–21. https://doi.org/10.1080/10749039.2022.2060260
  • Fischer, M. H., & Shaki, S. (2018). Number concepts: Abstract and embodied. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170125. http://dx.doi.org/10.1098/rstb.2017.0125
  • Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1–2), 43–74. https://doi.org/10.1016/0010-0277(92)90050-R
  • Khatin-Zadeh, O. (2021). How does representational transformation enhance mathematical thinking? Axiomathes. https://doi.org/10.1007/s10516-021-09602-2
  • Khatin-Zadeh, O., Yazdani-Fazlabadi, B., & Eskandari, Z. (2021). The grounding of mathematical concepts through fictive motion, gesture and the motor system. For the Learning of Mathematics, 41(3), 19–21.
  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: how the embodied mind brings mathematics into being. Basic Books.
  • Lyons, I. M., & Ansari, D. (2015). Numerical order processing in children: From reversing the distance-effect to predicting arithmetic. Mind, Brain, and Education, 9(4), 207–221. https://doi.org/10.1111/mbe.12094
  • Marghetis, T., & Núñez, R. (2013). The motion behind the symbols: A vital role for dynamism in the conceptualization of limits and continuity in expert mathematics. Topics in Cognitive Science, 5(2), 299–316. https://doi.org/10.1111/tops.12013
  • Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. The Quarterly Journal of Experimental Psychology, 67(8), 1514–1526. https://doi.org/10.1080/17470218.2014.903985
  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520. https://doi.org/10.1038/2151519a0
  • Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408–415.
  • Rosa, M., & Farsani, D. (2021). Two fish moving in their seas: How does the body language of teachers show itself who teach mathematical equations?. Acta Scientiae, 23(4), 141–168.
  • Sasanguie, D., Defever, E., Van den Bussche, E., & Reynvoet, B. (2011). The reliability of and the relation between non-symbolic numerical distance effects in comparison, same-different judgments and priming. Acta Psychologica, 136(1), 73–80. https://doi.org/10.1016/j.actpsy.2010.10.004
  • van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: The same-different task. Journal of Cognitive Psychology, 23(1), 112–120. https://doi.org/10.1080/20445911.2011.466796