1,964
Views
13
CrossRef citations to date
0
Altmetric
GEOGRAPHY

Evaluating the capability of Worldview-2 imagery for mapping alien tree species in a heterogeneous urban environment

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1754146 | Received 07 Oct 2019, Accepted 06 Apr 2020, Published online: 30 Apr 2020

References

  • Abdel-Rahman, E. M., Mutanga, O., Adam, E., & Ismail, R. (2014). Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 48–19. https://doi.org/10.1016/j.isprsjprs.2013.11.013
  • Abiye, T., Masindi, K., Mengistu, H., & Demlie, M. (2018). Understanding the groundwater-level fluctuations for better management of groundwater resource: A case in the Johannesburg region. Groundwater for Sustainable Development, 7, 1–7. https://doi.org/10.1016/j.gsd.2018.02.004
  • Adam, E., Mureriwa, N., & Newete, S. (2017). Mapping Prosopis glandulosa (mesquite) in the semi-arid environment of South Africa using high-resolution WorldView-2 imagery and machine learning classifiers. Journal of Arid Environments, 145, 43–51. https://doi.org/10.1016/j.jaridenv.2017.05.001
  • Adelabu, S., Mutanga, O., Adam, E. E., & Cho, M. A. (2013). Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image. Journal of Applied Remote Sensing, 7(1), 073480. https://doi.org/10.1117/1.JRS.7.073480
  • Alonzo, M., Bookhagen, B., & Roberts, D. A. (2014). Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment, 148, 70–83. https://doi.org/10.1016/j.rse.2014.03.018
  • Alonzo, M., McFadden, J. P., Nowak, D. J., & Roberts, D. A. (2016). Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban Forestry & Urban Greening, 17, 135–147. https://doi.org/10.1016/j.ufug.2016.04.003
  • Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138–146. https://doi.org/10.1890/120150
  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Cleve, C., Kelly, M., Kearns, F. R., & Moritz, M. (2008). Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Computers, Environment and Urban Systems, 32(4), 317–326. https://doi.org/10.1016/j.compenvurbsys.2007.10.001
  • Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., Straub, C., & Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186, 64–87. https://doi.org/10.1016/j.rse.2016.08.013
  • Forestry & Agricultural Biotechnology Institute. (2019). The Polyphagous Shothole Borer (PSHB) and its fungus in South Africa. University of Pretoria. Retrieved October 10, 2019 from https://www.fabinet.up.ac.za/index.php/research/7
  • Grobler, C. H., Bredenkamp, G. J., & Brown, L. R. (2002). Natural woodland vegetation and plant species richness of the urban open spaces in Gauteng, South Africa. Koedoe, 45(1), 19–34. https://doi.org/10.4102/koedoe.v45i1.13
  • Henderson, L. (2001). Alien weeds and invasive plants: A complete guide to declared weeds and invaders in South Africa (Vol. 12). Plant Protection Research Institute.
  • Jaenson, R., Bassuk, N., Schwager, S., & Headley, D. (1992). A statistical method for the accurate and rapid sampling of urban street tree populations. Journal of Arboriculture, 18(4), 171–183. Scopus.
  • Johannesburg City Parks & Zoo. (2018). The city that’s a rain forest. Johannesburg City Parks & Zoo. Retrieved May 16, 2019 from http://www.jhbcityparks.com/index.php/street-trees-contents-29
  • Jombo, S., Adam, E., & Odindi, J. (2017). Quantification of landscape transformation due to the Fast Track Land Reform Programme (FTLRP) in Zimbabwe using remotely sensed data. Land Use Policy, 68, 287–294. https://doi.org/10.1016/j.landusepol.2017.07.023
  • Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., & Mattsson, E. (2015). Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sensing, 7(8), 10017–10041. https://doi.org/10.3390/rs70810017
  • Ke, Y., & Quackenbush, L. J. (2011). A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. International Journal of Remote Sensing, 32(17), 4725–4747. https://doi.org/10.1080/01431161.2010.494184
  • Krahwinkler, P., & Rossman, J. (2011). Using decision tree based multiclass support vector machines for forest mapping [Paper presented]. The IEEE Int. Geoscience and Remote Sensing Symp, Vancouver, Canada.
  • Le Louarn, M., Clergeau, P., Briche, E., & Deschamps-Cottin, M. (2017). “Kill Two birds with one stone”: Urban tree species classification using bi-temporal pléiades images to study nesting preferences of an invasive bird. Remote Sensing, 9(9), 916. https://doi.org/10.3390/rs9090916
  • Li, D., Ke, Y., Gong, H., & Li, X. (2015). Object-based urban tree species classification using bi-temporal WorldView-2 and WorldView-3 images. Remote Sensing, 7(12), 16917–16937. https://doi.org/10.3390/rs71215861
  • Liu, L., Coops, N. C., Aven, N. W., & Pang, Y. (2017). Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sensing of Environment, 200, 170–182. https://doi.org/10.1016/j.rse.2017.08.010
  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. https://doi.org/10.1080/01431160600746456
  • Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343
  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
  • Mustafa, Y. T., Habeeb, H. N., Stein, A., & Sulaiman, F. Y. (2015). Identification and mapping of tree species in urban areas using WorldView-2 imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II(2/W2), 175–181. https://doi.org/10.5194/isprsannals-II-2-W2-175-2015
  • Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406. https://doi.org/10.1016/j.jag.2012.03.012
  • Myeong, S., Nowak, D. J., & Duggin, M. J. (2006). A temporal analysis of urban forest carbon storage using remote sensing. Remote Sensing of Environment, 101(2), 277–282. https://doi.org/10.1016/j.rse.2005.12.001
  • Naicker, K., Cukrowska, E., & McCarthy, T. S. (2003). Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environmental Pollution, 122(1), 29–40. https://doi.org/10.1016/S0269-7491(02)00281-6
  • Niska, H., Skon, J.-P., Packalen, P., Tokola, T., Maltamo, M., & Kolehmainen, M. (2010). Neural networks for the prediction of species-specific plot volumes using airborne laser scanning and aerial photographs. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1076–1085. https://doi.org/10.1109/TGRS.2009.2029864
  • Novack, T., Esch, T., Kux, H., & Stilla, U. (2011). Machine learning comparison between WorldView-2 and quickbird-2-simulated imagery regarding object-based urban land cover classification. Remote Sensing, 3(10), 2263–2282. https://doi.org/10.3390/rs3102263
  • Nowak, D. J., Crane, D. E., Stevens, J. C., Hoehn, R. E., Walton, J. T., & Bond, J. (2008). A ground-based method of assessing urban forest structure and ecosystem services. Arboriculture and Urban Forestry, 34(6), 347–358. https://doi.org/10.2737/NRS-RB-9
  • Odindi, J., Mutanga, O., Rouget, M., & Hlanguza, N. (2016). Mapping alien and indigenous vegetation in the KwaZulu-Natal Sandstone Sourveld using remotely sensed data. Bothalia, 46(2). https://doi.org/10.4102/abc.v46i2.2103
  • Paap, T., Burgess, T. I., & Wingfield, M. J. (2017). Urban trees: Bridge-heads for forest pest invasions and sentinels for early detection. Biological Invasions, 19(12), 3515–3526. https://doi.org/10.1007/s10530-017-1595-x
  • Paap, T., de Beer, Z. W., Migliorini, D., Nel, W. J., & Wingfield, M. J. (2018). The polyphagous shot hole borer (PSHB) and its fungal symbiont Fusarium euwallaceae: A new invasion in South Africa. Australasian Plant Pathology, 47(2), 231–237. https://doi.org/10.1007/s13313-018-0545-0
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698
  • Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2015). Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Administration and Policy in Mental Health and Mental Health Services Research, 42(5), 533–544. https://doi.org/10.1007/s10488-013-0528-y
  • Pautasso, M., Schlegel, M., & Holdenrieder, O. (2015). Forest health in a changing world. Microbial Ecology, 69(4), 826–842. https://doi.org/10.1007/s00248-014-0545-8
  • Puissant, A., Rougier, S., & Stumpf, A. (2014). Object-oriented mapping of urban trees using random forest classifiers. International Journal of Applied Earth Observation and Geoinformation, 26, 235–245. https://doi.org/10.1016/j.jag.2013.07.002
  • Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2014). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153–168. https://doi.org/10.3390/rs70100153
  • Raczko, E., & Zagajewski, B. (2017). Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. European Journal of Remote Sensing, 50(1), 144–154. https://doi.org/10.1080/22797254.2017.1299557
  • Räsänen, A., Rusanen, A., Kuitunen, M., & Lensu, A. (2013). What makes segmentation good? A case study in boreal forest habitat mapping. International Journal of Remote Sensing, 34(23), 8603–8627. https://doi.org/10.1080/01431161.2013.845318
  • Richardson, J. J., & Moskal, L. M. (2014). Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban Forestry & Urban Greening, 13(1), 152–157. https://doi.org/10.1016/j.ufug.2013.07.003
  • Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and plant analysis laboratory manual. ICARDA.
  • Salih, A. A. M., Ganawa, E.-T., & Elmahl, A. A. (2017). Spectral mixture analysis (SMA) and change vector analysis (CVA) methods for monitoring and mapping land degradation/desertification in arid and semiarid areas (Sudan), using Landsat imagery. The Egyptian Journal of Remote Sensing and Space Science, 20, S21–S29. https://doi.org/10.1016/j.ejrs.2016.12.008
  • Schäffler, A., & Swilling, M. (2013). Valuing green infrastructure in an urban environment under pressure — The Johannesburg case. Ecological Economics, 86, 246–257. https://doi.org/10.1016/j.ecolecon.2012.05.008
  • Seiferling, I., Naik, N., Ratti, C., & Proulx, R. (2017). Green streets − Quantifying and mapping urban trees with street-level imagery and computer vision. Landscape and Urban Planning, 165, 93–101. https://doi.org/10.1016/j.landurbplan.2017.05.010
  • Shojanoori, R., Shafri, H. Z. M., Mansor, S., & Ismail, M. H. (2016). The use of WorldView-2 satellite data in urban tree species mapping by object-based image analysis technique. Sains Malaysiana, 45(7), 1025–1034.
  • Thanh Noi, P., & Kappas, M. (2017). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors, 18(1), 18. https://doi.org/10.3390/s18010018
  • Turton, A., Schultz, C., Buckle, H., Kgomongoe, M., Malungani, T., & Drackner, M. (2006). Gold, scorched earth and water: The hydropolitics of Johannesburg. Water Resources Development, 22(2), 313–335. https://doi.org/10.1080/07900620600649827
  • Tyrväinen, L., Pauleit, S., Seeland, K., & de Vries, S. (2005). Benefits and uses of urban forests and trees. In Urban forests and trees (pp. 81–114). Springer. https://doi.org/10.1007/3-540-27684-X_5
  • Tyson, P. D., & Wilcocks, J. R. N. (1971). Rainfall variation over Johannesburg—the local climate over Johannesburg. University of Witwatersrand.
  • van Wilgen, B. W., & Richardson, D. M. (2014). Challenges and trade-offs in the management of invasive alien trees. Biological Invasions, 16(3), 721–734. https://doi.org/10.1007/s10530-013-0615-8
  • Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer2 Verlag.
  • Waser, L. T., Küchler, M., Jütte, K., & Stampfer, T. (2014). Evaluating the potential of WorldView-2 data to classify tree species and different levels of ash mortality. Remote Sensing, 6(5), 4515–4545. https://doi.org/10.3390/rs6054515
  • Yan, J., Zhou, W., Han, L., & Qian, Y. (2018). Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology. Urban Forestry & Urban Greening, 31, 230–240. https://doi.org/10.1016/j.ufug.2018.01.021
  • Zengeya, T., Ivey, P., Woodford, D. J., Weyl, O., Novoa, A., Shackleton, R., Richardson, D., & van Wilgen, B. (2017). Managing conflict-generating invasive species in South Africa: Challenges and trade-offs. Bothalia-African Biodiversity & Conservation, 47(2), 1–11. http://dx.doi.org/10.4102/abc.v47i2.2160
  • Zhang, C., Chen, Y. L., & Lu, D. S. (2015). Mapping the land-cover distribution in arid and semiarid urban landscapes with landsat thematic mapper imagery. International Journal of Remote Sensing, 36(17), 4483–4500. https://doi.org/10.1080/01431161.2015.1084552