46,454
Views
33
CrossRef citations to date
0
Altmetric
GEOGRAPHY

Paddy, rice and food security in Malaysia: A review of climate change impacts

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1818373 | Received 19 Jun 2020, Accepted 29 Aug 2020, Published online: 14 Sep 2020

References

  • Ambrose, A. F., Rasiah, R., & Al-Amin, A. Q. (2017). Development implications for Malaysia: Hydrogen as a road transport fuel. In R. M. Harrison & R. E. Hester (Eds.), Environmental impacts of road vehicles: Past, present and future (pp. 157–17). Cambridge, UK: Royal Society of Chemistry.
  • Arshad, F. M., Jani, M. F., & Yusop, M. K. (2010, November 9–10). Malaysia food security policy agenda [ Paper Presentation]. Bengkel Mengarusperdana Pertanian dalam model Ekonomi Baru Malaysia, Bangi.
  • Asian Development Bank (ADB). (2019). Ending hunger in Asia and the Pacific by 2030: An assessment of investment requirements in agriculture. Asian Development Bank. https://www.adb.org/sites/default/files/publication/533281/ending-hunger-asia-pacific-2030.pdf
  • Bickford, D., Howard, S. D., Ng, D. J. J., & Sheridan, J. A. (2010). Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodiversity and Conservation, 19(4), 1043–1062. https://doi.org/10.1007/s10531-010-9782-4
  • Bishwajit, G., Sarker, S., Kpoghomou, M. A., Gao, H., Jun, L., Yin, D., & Ghosh, S. (2013). Self-sufficiency in rice and food security: A South Asian perspective. Agriculture & Food Security, 2(1), 10. https://doi.org/10.1186/2048-7010-2-10
  • Candradijaya, A., Kusmana, C., Syaukat, Y., Syaufina, L., & Faqih, A. (2014). Climate change impact on rice yield and adaptation response of local farmers in Sumedang district, West Java, Indonesia. International Journal of Ecosystem, 4(5), 212–223. http://article.sapub.org/10.5923.j.ije.20140405.02.html
  • Darwin, R., & Kennedy, D. (2000). Economic effects of CO2 fertilization of crops: Transforming changes in yield into changes in supply. Environmental Modeling & Assessment, 5(3), 157–168. https://doi.org/10.1023/A:1019013712133
  • Department of Agriculture. (2018). Booklet statistik tanaman: Subsektor tanaman makanan.
  • Department of Agriculture. (2019). Paddy statistics of Malaysia 2018.
  • Economic Planning Unit. (2015). Eleventh Malaysia plan, 2016-2020: Anchoring growth on people.
  • Fahmi, Z., Samah, B. A., & Abdullah, H. (2013). Paddy industry and paddy farmers well-being: A success recipe for agriculture industry in Malaysia. Asian Social Science, 9(3), 177. https://doi.org/10.5539/ass.v9n3p177
  • FAO. (2008). Climate change and food security: A framework document.
  • FAO. (2017). The future of food and agriculture: Trends and challenges.
  • Firdaus, R. B. R. (2015). The impact of climate change on paddy sector: Implication towards farmers’ production and national food security [Unpublished. Doctoral dissertation]. Universiti Kebangsaan Malaysia, Bangi.
  • Firdaus, R. B. R., Gunaratne, M. S., Rahmat, S. R., & Kamsi, N. S. (2019). Does climate change only affect food availability? What else matters? Cogent Food & Agriculture, 5(1), 1–18. https://doi.org/10.1080/23311932.2019.1707607
  • Firdaus, R. B. R., Ibrahim, A. Z., Siwar, C., & Jaafar, A. H. (2014). The livelihood of paddy farmers in facing challenges of climatic change: The role of government intervention through paddy price subsidy scheme. Kajian Malaysia, 32(2), 73–92. http://web.usm.my/km/32(2)2014/%2032(2)%202014%20-%20Art.%204.pdf
  • Firdaus, R. B. R., Samsurijan, M. S., Singh, P. S. J., Yahaya, M. H., Latiff, A. R. A., & Vadevelu, K. (2018). Impact of climate change on agriculture based on the crop growth simulation (CGS) model. Geografia-Malaysian Journal of Society and Space, 14(3), 53–66. https://doi.org/10.17576/geo-2018-1403-05
  • Firdaus, R. B. R., Siwar, C., & Jaafar, A. H. (2015). Pasca krisis makanan 2008: Implikasi penggantungan terhadap beras import. Jurnal Kemanusiaan, 13(3), 28–39. https://jurnalkemanusiaan.utm.my/index.php/kemanusiaan/article/view/53
  • Ghani, A. A., Ali, R., Zakaria, N. A., Hasan, Z. A., Chang, C. K., & Ahamad, M. S. S. (2010). A temporal change study of the Muda river system over 22 years. International Journal of River Basin Management, 8(1), 25–37. https://doi.org/10.1080/15715121003715040
  • Government of Malaysia. (1984). National agricultural policy. Jabatan Percetakan Negara.
  • Government of Malaysia. (2017). Malaysia sustainable development goals voluntary national review 2017: High-level political forum. Economic Planning Unit, Prime Minister’s Department.
  • Gregory, P. J., & Ingram, J. S. I. (2000). Global change and food and forest production: Future scientific challenges. Agriculture, Ecosystems & Environment, 82(1–3), 3–14. https://doi.org/10.1016/S0167-8809(00)00212-7
  • Hamzah, F. M., Saimi, F. M., & Jaafar, O. (2017). Identifying the monotonic trend in climate change parameter in Kluang and Senai, Johor, Malaysia. Sains Malaysiana, 46(10), 1735–1741. https://doi.org/10.17576/jsm-2017-4610-09
  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10(A), 4–10. https://doi.org/10.1016/j.wace.2015.08.001
  • Herman, T., Murchie, E. H., & Warsi, A. A. (2015). Rice production and climate change: A case study of Malaysian rice. Pertanika Journal of Tropical Agricultural Science, 38(3), 321–328. http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JTAS%20Vol.%2038%20(3)%20Aug.%202015/02%20JTAS%200670-2014%20(Short%20Comm).pdf
  • IFPRI. (2009). Impact of climate change on agriculture: Factsheet on Asia. Retrieved December 8, 2019, from http://fpmu.gov.bd/agridrupal/sites/default/files/2009_IFPRI_fact_sheets_on_climate_change_and_agric.pdf
  • IRRI. (2019). IRRI World Rice Statistics (2019). Online query facility. Retrieved January 8, 2019, from http://ricestat.irri.org:8080/wrs2/entrypoint.htm
  • Jawad, Z. S., Tayeb, F. A., & Jebur, A. K. (2018). Mapping climate changes in Iraq by using geographical information system (GIS). International Journal of Engineering & Technology, 7(4.20), 578–583. https://doi.org/10.14419/ijet.v7i4.20.26422
  • Kasim, N. M., Ahmad, M. H., Shaharudin, A. B., Naidu, B. M., Chan, Y. Y., & Aris, T. (2018). Food choices among Malaysian adults: Findings from Malaysian adults nutrition survey (MANS) 2003 and MANS 2014. Malaysian Journal of Nutrition, 24(1), 63–75. https://nutriweb.org.my/mjn/publication/24-1/g.pdf
  • Kattelus, M., Salmivaara, A., Mellin, I., Varis, O., & Kummu, M. (2016). An evaluation of the standardised precipitation index for assessing inter‐annual rice yield variability in the Ganges–Brahmaputra–Meghna region. International Journal of Climatology, 36(5), 2210–2222. https://doi.org/10.1002/joc.4489
  • Kim, H.-Y., Jonghan, K., Kang, S., & Tenhunen, J. (2013). Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biology, 19(2), 548–562. https://doi.org/10.1111/gcb.12047
  • Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritising climate change adaption needs for food security in 2030. Science, 319(5863), 607–610. https://doi.org/10.1126/science.1152339
  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620. https://doi.org/10.1126/science.1204531
  • Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. (2004). Rising atmospheric carbon dioxide: Plants face the future. Annual Review of Plant Biology, 55(1), 591–628. https://doi.org/10.1146/annurev.arplant.55.031903.141610
  • MADA. (2010). Buku perangkaan MADA 2009.
  • Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T. (Eds.), & IPCC. (2018). Special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.
  • Mendelsohn, R., Dinar, A., & Sanghi, A. (2001). The effect of development on the climate sensitivity of agriculture. Environment and Development Economics, 6(1), 85–101. https://doi.org/10.1017/S1355770X01000055
  • Mohamed, Z., Terano, R., Shamsudin, M., & Latif, I. A. (2016). Paddy farmers’ sustainability practices in granary areas in Malaysia. Resources, 5(2), 17. https://doi.org/10.3390/resources5020017
  • Mohammed, A. R., & Tarpley, L. (2011). High night temperature and plant growth regulator effects on spikelet sterility, grain characteristics and yield of rice (Oryza sativa L.) plants. Canadian Journal of Plant Science, 91(2), 283–291. https://doi.org/10.4141/CJPS10038
  • Mohanty, S., Wassmann, R., Nelson, A., Moya, P., & Jagadish, S. V. K. (2013). Rice and climate change: Significance for food security and vulnerability (4th ed.). International Rice Research Institute.
  • Muazu, A., Yahya, A., Ishak, W. I. W., & Khairunniza-Bejo, S. (2015). Energy audit for sustainable wetland paddy cultivation in Malaysia. Energy, 87(C), 182–191. https://doi.org/10.1016/j.energy.2015.04.066
  • Najim, M. M. M., Lee, T. S., Haque, M. A., & Esham, M. (2007). Sustainability of rice production: A Malaysian perspective. Journal of Agricultural Sciences-Sri Lanka, 3(1), 2–12. http://doi.org/10.4038/jas.v3i1.8138
  • Ngoc Thuy, N., & Ha Anh, H. (2015). Vulnerability of rice production in Mekong river delta under impacts from floods, salinity and climate change. International Journal on Advanced Science, Engineering and Information Technology, 5(4), 272–279. https://doi.org/10.18517/ijaseit.5.4.545
  • Omar, S. C., Shaharudin, A., & Tumin, S. A. (2019). The status of the paddy and rice industry in Malaysia. Khazanah Research Institute.
  • Parry, M., Arnell, N., McMichael, T., Nicholls, R., Martens, P., Kovats, S., Livermore, M., Rosenweig, C., Iglesias, A., & Fisher, G. (2001). Million at risk: Defining critical climate change threats and targets. Global Environment Change, 11(3), 181–183. https://doi.org/10.1016/S0959-3780(01)00011-5
  • Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2021–2035. https://doi.org/10.1098/rstb.2005.1752
  • Poudel, S., & Kotani, K. (2013). Climatic impacts on crop yield and its variability in Nepal: Do they vary across seasons and altitudes? Climatic Change, 116(2), 327–355. https://doi.org/10.1007/s10584-012-0491-8
  • Rajamoorthy, Y., Rahim, K. B. A., & Munusamy, S. (2015). Rice industry in Malaysia: Challenges, policies and implications. Procedia Economics and Finance, 31(2015), 861–867. https://doi.org/10.1016/S2212-5671(15)01183-1
  • Rice Almanac. (2013). Global rice science partnership (4th ed.). International Rice Research Institute.
  • Rosegrant, M. W., & Cline, A. S. (2003). Global food security: Challenges and policies. Sciences, 302(5652), 1917–1919. https://doi.org/10.1126/science.1092958
  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., & Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3268–3273. https://doi.org/10.1073/pnas.1222463110
  • Samberg, L. H., Gerber, J. S., Ramankutty, N., Herrero, M., & West, P. C. (2016). Subnational distribution of average farm size and smallholder contributions to global food production. Environmental Research Letters, 11(12), 124010. https://doi.org/10.1088/1748-9326/11/12/124010
  • Sekhar, C. S. C. (2018). Climate change and rice economy in Asia: Implications for trade policy. FAO. Licence: CC BY-NC-SA 3.0 IGO.
  • Shah, F., Adnan, M., Noor, M., Arif, M., Alam, M., Khan, I. A., Ullah, H., Wahid, F., Mian, I.A., Jamal, Y. and Basir, A., & Wang, D. (2019). Major constraints for global rice production. In M. Hasanuzzaman, M. Fujita, K. Nahar, & J. K. Biswas (Eds.), Advances in rice research for abiotic stress tolerance (pp. 1–22). Elsevier.
  • Shrestha, S., Deb, P., & Bui, T. T. T. (2016). Adaptation strategies for rice cultivation under climate change in Central Vietnam. Mitigation and Adaptation Strategies for Global Change, 21(1), 15–37. https://doi.org/10.1007/s11027-014-9567-2
  • Solaymani, S. (2018). Impacts of climate change on food security and agriculture sector in Malaysia. Environment, Development and Sustainability, 20(4), 1575–1596. https://doi.org/10.1007/s10668-017-9954-4
  • Sundaram, J. K., & Gen, T. Z. (2019). Achieving food security for all Malaysians. Khazanah Research Institute. License: Creative Commons Attribution CC BY 3.0.
  • Tan, M. L. (2019). Assessment of TRMM product for precipitation extreme measurement over the Muda river basin, Malaysia. HydroResearch, 2(2019), 69–75. to the references. https://doi.org/10.1016/j.hydres.2019.11.004
  • Tan, M. L., Ibrahim, A. L., Yusop, Z., Duan, Z., & Ling, L. (2015). Impacts of land-use and climate variability on hydrological components in the Johor river basin, Malaysia. Hydrological Sciences Journal, 60(5), 873–889. https://doi.org/10.1080/02626667.2014.967246
  • Tan, M. L., Samat, N., Chan, N. W., Lee, A. J., & Li, C. (2019). Analysis of precipitation and temperature extremes over the Muda river basin, Malaysia. Water, 11(2), 283. https://doi.org/10.3390/w11020283
  • Tang, K. H. D. (2019). Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Science of the Total Environment, 650(2), 1858–1871. https://doi.org/10.1016/j.scitotenv.2018.09.316
  • Tang, K. H. D. (2019a). Climate change and paddy yield in Malaysia: A short communication. Global Journal of Civil and Environmental Engineering, 1(June), 14–19. https://doi.org/10.36811/gjcee.2019.110003
  • Terano, R., & Mohamed, Z. (2011). Household income structure among paddy farmers in the granary areas of Malaysia. International Proceedings of Economics Development and Research, 14(2011), 160–165. http://www.ipedr.com/vol14/29-ICIMS2011S00055.pdf
  • United States Department of Agriculture (USDA). 2020. World agricultural production. USDA Foreign Agricultural Service, USA. https://downloads.usda.library.cornell.edu/usdaesmis/files/5q47rn72z/z890sd52n/hd76sk58s/production.pdf
  • Vaghefi, N., Shamsudin, M. N., Makmom, A., & Bagheri, M. (2011). The economic impacts of climate change on the rice production in Malaysia. International Journal of Agricultural Research, 6(1), 67–74. https://doi.org/10.3923/ijar.2011.67.74
  • Vaghefi, N., Shamsudin, M. N., Radam, A., & Rahim, K. A. (2016). Impact of climate change on food security in Malaysia: Economic and policy adjustments for rice industry. Journal of Integrative Environmental Sciences, 13(1), 19–35. https://doi.org/10.1080/1943815X.2015.1112292
  • Van, T. K. (1974). The effects of climate on rice yields in Malaysia. The Malaysian Agricultural Journal, 49(3), 296–301. ISSN: 0025-1321
  • Vashisht, B. B., Nigon, T., Mulla, D. J., Rosen, C., Xu, H., Twine, T., & Jalota, S. K. (2015). Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minnesota: Field and simulation study. Agricultural Water Management, 152(2015), 198–206. https://doi.org/10.1016/j.agwat.2015.01.011
  • Wang, H., Zhang, Y., Chen, A., Liu, H., Zhai, L., Lei, B., & Ren, T. (2017). An optimal regional nitrogen application threshold for wheat in the North China plain considering yield and environmental effects. Field Crops Research, 207(2017), 52–61. https://doi.org/10.1016/j.fcr.2017.03.002
  • Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14562–14567. https://doi.org/10.1073/pnas.1001222107
  • Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513. https://doi.org/10.1126/science.1239402
  • Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., & Prasad, P. V. V. (2000). Temperature variability and the yield of annual crops. Agriculture, Ecosystems & Environment, 82(1–3), 159–167. https://doi.org/10.1016/S0167-8809(00)00224-3
  • Wollenweber, B., Porter, J. R., & Schellberg, J. (2003). Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science, 189(3), 142–150. https://doi.org/10.1046/j.1439-037X.2003.00025.x
  • Wong, C. L., Venneker, R., Uhlenbrook, S., Jamil, A. B. M., & Zhou, Y. (2009). Variability of rainfall in Peninsular Malaysia. Hydrology and Earth System Sciences Discussions, 6(4), 5471–5503. https://doi.org/10.5194/hessd-6-5471-2009
  • Yap, G. B. (2019). Food supply Chain in Malaysia: Review of agricultural policies, public institutional set-up and food regulations. Khazanah Research Institute. License: Creative Commons Attribution CC BY 3.0.
  • Yasar, M., Siwar, C., & Firdaus, R. B. R. (2015). Assessing paddy farming sustainability in the Northern Terengganu Integrated Agricultural Development Area (IADA KETARA): A structural equation modelling approach. Pacific Science Review B: Humanities and Social Sciences, 1(2015), 71–75. https://doi.org/10.1016/j.psrb.2016.05.001
  • Yii, K. J., & Geetha, C. (2017). The nexus between technology innovation and CO2 emissions in Malaysia: Evidence from granger causality test. Energy Procedia, 105(2017), 3118–3124. https://doi.org/10.1016/j.egypro.2017.03.654