132
Views
0
CrossRef citations to date
0
Altmetric
Politics & International Relations

Possible approaches to assessing terrain mobility after the effects of artillery munition

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2368096 | Received 15 Jan 2024, Accepted 09 Jun 2024, Published online: 20 Jun 2024

References

  • Aji, S., Kumam, P., Siricharoen, P., Bukar, A. M., & Adamu, M. S. (2021). Deep transfer learning for automated artillery crater classification. Thai Journal of Mathematics, 19, 1–23.
  • Barni, M., Mecocci, A., & Perugini, L. (2000). Craters detection via possibilistic shell clustering. Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101). IEEE. https://doi.org/10.1109/icip.2000.899810
  • Beer, S., Komenda, J., Jedlicka, L., Roman, V., & Frantisek, R. (2020). Munition, part II: Artillery Shells. University of Defence.
  • Chen, C., Shi, Q., You, Z-f., Ge, H-y., & Zhang, F. (2021). A method to determine the shell layout scheme for equipment battlefield damage tests under artillery fire. Defence Technology, 17(2), 682–691. https://doi.org/10.1016/j.dt.2020.02.019
  • Cibulova, K., Formanek, M., & Priesner, M. (2017). The possible means suggested for improvement of evaluation of low endurable terrain. In Durability of critical infrastructure, monitoring and testing - Lecture notes in mechanical engineering (pp. 17–26). Springer-Verlag Singapore Pte Ltd, Singapore. https://doi.org/10.1007/978-981-10-3247-9_3
  • Collins, J. M. (1998). Military geography for professionals and the public. Brassey's.
  • Danish Defence. (2023). Ukrainian soldiers trained on Danish artillery pieces. The Ministry of Defence Agencies.
  • Dawid, W., & Pokonieczny, K. (2021). Methodology of using terrain passability maps for planning the movement of troops and navigation of unmanned ground vehicles. Sensors, 21(14), 4682. https://doi.org/10.3390/s21144682
  • Dohnal, F., Hubacek, M., & Simkova, K. (2019). Detection of microrelief objects to impede the movement of vehicles in Terrain. ISPRS International Journal of Geo-Information, 8(3), 101. https://doi.org/10.3390/ijgi8030101
  • Duncan, E. C., Skakun, S., Kariryaa, A., & Prishchepov, A. V. (2023). Detection and mapping of artillery craters with very high spatial resolution satellite imagery and deep learning. Science of Remote Sensing, 7, 100092. https://doi.org/10.1016/j.srs.2023.100092
  • Farlik, J., Stefek, A., & Casar, J. (2014). Multi-agent system as operational center support. Proceedings of the 16th International Conference on Mechatronics - Mechatronika 2014. IEEE. https://doi.org/10.1109/mechatronika.2014.7018302
  • Henrych, J. (1973). Explosion dynamics and its applications. Academia.
  • Heštera, H., & Pahernik, M. (2018). Physical-geographic factors of terrain trafficability of military vehicles according to western world methodologies. Hrvatski Geografski Glasnik/Croatian Geographical Bulletin, 80(2), 5–31. https://doi.org/10.21861/HGG.2018.80.02.01
  • Hujer, V., Slouf, V., & Jan, F. (2022). Utility as a key criterion of a decision-making on structure of the ground based air defence. In Modelling and simulation for autonomous systems. Springer International Publishing, 8, 249–260. https://doi.org/10.1007/978-3-030-98260-7_15
  • Hupy, J. P. (2006). The long‐term effects of explosive munitions on the WWI battlefield surface of Verdun, France. Scottish Geographical Journal, 122(3), 167–184. https://doi.org/10.1080/00369220618737264
  • Ivan, J., Blaha, M., Šustr, M., & Havlík, T. (2021). Evaluation of possible approaches to meteorological techniques of artillery manual gunnery after the adoption of automated fire control system. Vojenské Rozhledy, 30(3), 075–096. https://doi.org/10.3849/2336-2995.30.2021.03.075-092
  • Ivan, J., Sustr, M., Pekar, O., & Potuzak, L. (2022 Prospects for the use of unmanned ground vehicles in artillery survey [Paper presentation]. Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO) (pp. 467–475). https://doi.org/10.5220/0011300100003271
  • Jančo, J., & Kompan, J. (2023). Influence of the bridge's status on the military mobility in the Slovak Republic. In TRANSBALTICA XIII: Transportation science and technology. TRANSBALTICA 2022. Lecture notes in intelligent transportation and infrastructure (pp. 470–478). Springer. https://doi.org/10.1007/978-3-031-25863-3_44
  • Janecka, F. (1989). Means of destruction and protective structures. VVŠ PV LS.
  • Jensen, M. R., Smith, W., & Khanna, K. (2021). Parameter characterization of a buried mine blast event with further emphasis on sympathetic detonation and layered soil bed conditions. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 19(4), 659–677. https://doi.org/10.1177/15485129211021169
  • Joshi, P. S., & Panigrahi, S. K. (2023). Blast performance of warhead shell materials: A numerical study. Materials Today: Proceedings, 72, 1212–1215. https://doi.org/10.1016/j.matpr.2022.09.285
  • Kompan, J. (2018). Využitie distribučných úloh pri plánovaní ženijnej podpory mobility v stabilizačných aktivitách. Vojenské Reflexie, 13(2), 7–20.
  • Kompan, J., & Hrnciar, M. (2021a). Enhancing the critical thinking of the cadets via real-life scenarios during remote learning. EDULEARN21 Proceedings [Paper presentation].13th International Conference on Education and New Learning Technologies (pp. 5238–5245). https://doi.org/10.21125/edulearn.2021.1078
  • Kompan, J., & Hrnčiar, M. (2021b). Security force assistance advisory team – inputs and outcomes. Vojenské Rozhledy, 30(2), 055–069. https://doi.org/10.3849/2336-2995.30.2021.02.055-069
  • Lappi, E., Sysikaski, M., Akesson, B., & Yildirim, U. Z. (2012). Effects of terrain in computational methods for indirect fire. Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC). IEEE. https://doi.org/10.1109/wsc.2012.6465057
  • Magnini, L., Bettineschi, C., & De Guio, A. (2016). Object-based shell craters classification from LiDAR-derived sky-view factor. Archaeological Prospection. Wiley, 24, 211–223. https://doi.org/10.1002/arp.1565
  • Matos‐Machado, R., Toumazet, J., Bergès, J., Amat, J., Arnaud‐Fassetta, G., Bétard, F., Bilodeau, C., Hupy, J. P., & Jacquemot, S. (2019). War landform mapping and classification on the Verdun Battlefield (France) using airborne LiDAR and multivariate analysis. Earth Surface Processes and Landforms, 44(7), 1430–1448. https://doi.org/10.1002/esp.4586
  • Ministry of Defence Czech Republic. (1981). Žen-2-6 explosives and destruction.
  • Moon of Alabama. (2022). The Ukraine is still losing so what is its plan? Moon of Alabama (blog). April 18, 2022. https://www.moonofalabama.org/2022/04/the-ukraine-is-still-losing-so-what-is-its-plan.html
  • NATO Standardization Office. (1975). Military geographic documentation - Terrain. STANAG 2259.
  • NATO Standardization Office. (1999). Military geographic documentation - Terrain Analysis AgeoP-1 (A). STANAG 3992.
  • NATO Standardization Office. (2016). ATP-3.12.1(A)(1) Allied tactical doctrine for military engineering.
  • Nowakowski, M., & Kurylo, J. (2023). Usability of perception sensors to determine the obstacles of unmanned ground vehicles operating in off-road environments. Applied Sciences, 13(8), 4892. https://doi.org/10.3390/app13084892
  • Pokonieczny, K. (2017). Automatic military passability map generation system [Paper presentation]. 2017 International Conference on Military Technologies (ICMT). IEEE. https://doi.org/10.1109/MILTECHS.2017.7988771
  • Rasico, J. G., Newman, C. A., & Jensen, M. R. (2018). Modelling fragmentation of a 155 Mm artillery shell IED in a buried mine blast event. International Journal of Vehicle Performance, 4(4), 323. https://doi.org/10.1504/IJVP.2018.095752
  • Register of Treaties (in Czech). (2022). Czech RepublicMinistry of Defence-Artillery NATO. Digital and Information Agency.
  • Rolenec, O., Cibulova, K., Rolenec, O., & Zeleny, J. (2021). The evaluation of the possibilities of new organizational structures of engineer troops in the field of engineer mobility support [Paper presentation]. 2021 8th International Conference on Military Technologies, ICMT 2021 - Proceedings. Brno: Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICMT52455.2021.9502760
  • Rolenec, O., Silinger, K., & Sedlacek, M. (2022). Algorithm development of the decision-making process of an engineer specialization officer. Modelling and Simulation for Autonomous Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-98260-7_18
  • Rybansky, M., Dohnal, F., & Rada, J. (2020). The impact of microrelief forms on mobility of terrain vehicles. IOP Conference Series: Earth and Environmental Science, 540, 012083. https://doi.org/10.1088/1755-1315/540/1/012083
  • Rybansky, M., Hubacek, M., Hofmann, A., Kovarik, V., & Talhofer, V. (2014). The impact of terrain on cross-country mobility - Geographic factors and their characteristics. Proceedings of the 18th International Conference of the ISTVS (pp. 1–6).
  • Spisak, J., & Pikner, I. (2023). Principy válčení. Univerzita obrany.
  • Sustr, M., Ivan, J., Blaha, M., & Potuzak, L. (2022). A manual method of artillery fires correction calculation. Military Operations Research, 27, 77–94. https://doi.org/10.5711/1082598327377
  • Vajda, M. (2023). Analysis of target engagement methods used by ground based artillery of the armed forces of the Slovak republic. Vojenské Reflexie, 18(1), 78–90. https://doi.org/10.52651/vr.a.2023.1.78-90
  • Varecha, J. (2020). Increasing the accuracy and economy of artillery fires. Vojenské Reflexie, 15(2), 122–152.
  • Wang, L., Xiu-Juan, G., Xiao-Hui, L., & Chuan-You, W. (2015). Analysis of influencing factors on the warhead shell of the blasting power test. 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (Smta 2015) (pp. 373–377).
  • Yavuz, M. U., Sayar, R., Yilmaz, B., Bostanci, E., Guzel, M. S., & Yilmaz, A. A. (2019 Desktop artillery simulation using augmented reality [Paper presentation]. 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE). IEEE. https://doi.org/10.1109/ICEEE2019.2019.00023