1,065
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The impact of compressive force magnitude on the in vitro neutral zone range and passive stiffness during a flexion–extension range of motion test

, , & | (Reviewing Editor)
Article: 1014253 | Received 17 Jun 2014, Accepted 26 Jan 2015, Published online: 23 Feb 2015

References

  • Adams, M. A., Freeman, B. J., Morrison, H. P., Nelson, I. W., & Dolan, P. (2000). Mechanical initiation of intervertebral disc degeneration. Spine, 25, 1625–1636. doi:10.1097/00007632-200007010-00005
  • Adams, M. A., & Hutton, W. C. (1981). The effect of posture on the strength of the lumbar spine. ARCHIVE: Engineering in Medicine 1971-1988 (vols 1-17), 10, 199–202.10.1243/EMED_JOUR_1981_010_053_02
  • Adams, M. A., McNally, D. S., & Dolan, P. (1996). ‘Stress’ distributions inside intervertebral discs. The Journal of Bone and Joint Surgery, 78, 965–972.10.1302/0301-620X78B6.1287
  • Adams, M. A., McNally, D. S., Wagstaff, J., & Goodship, A. E. (1993). Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: A cause of disc failure? European Spine Journal, 1, 214–221.10.1007/BF00298362
  • Aultman, C. D., Scannell, J., & McGill, S. M. (2005). The direction of progressive herniation in porcine spine motion segments is influenced by the orientation of the bending axis. Clinical Biomechanics, 20, 126–129.10.1016/j.clinbiomech.2004.09.010
  • Ayturk, U. M., Garcia, J. J., & Puttlitz, C. M. (2010). The micromechanical role of the annulus fibrosus components under physiological loading of the lumbar spine. Journal of Biomechanical Engineering, 132, 061007. doi:10.1115/1.4001032
  • Balkovec, C., & McGill, S. (2012). Extent of nucleus pulposus migration in the annulus of porcine intervertebral discs exposed to cyclic flexion only versus cyclic flexion and extension. Clinical Biomechanics, 27, 766–770. doi:10.1016/j.clinbiomech.2012.05.006
  • Callaghan, J. P., & McGill, S. M. (2001). Intervertebral disc herniation: Studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clinical Biomechanics, 16, 28–37.10.1016/S0268-0033(00)00063-2
  • Cripton, P. A., Bruehlmann, S. B., Orr, T. E., Oxland, T. R., & Nolte, L. P. (2000). In vitro axial preload application during spine flexibility testing: Towards reduced apparatus-related artefacts. Journal of Biomechanics, 33, 1559–1568.10.1016/S0021-9290(00)00145-7
  • DePalma, M. J., Ketchum, J. M., & Saullo, T. (2011). What is the source of chronic low back pain and does age play a role? Pain Medicine, 12, 224–233. doi:10.1111/j.1526-4637.2010.01045.x
  • Galante, J. O. (1967). Tensile properties of the human lumbar annulus fibrosus. Acta Orthopaedica, 38, 1–91.10.3109/ort.1967.38.suppl-100.01
  • Gooyers, C. E., McMillan, R. D., Howarth, S. J., & Callaghan, J. P. (2012). The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics. Spine,. doi:10.1097/BRS.0b013e318256f9e6
  • Gunning, J. L., Callaghan, J. P., & McGill, S. M. (2001). Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: A biomechanical study using a porcine cervical spine model. Clinical Biomechanics, 16, 471–480.10.1016/S0268-0033(01)00032-8
  • Howarth, S. J., Gallagher, K. M., & Callaghan, J. P. (2013). Postural influence on the neutral zone of the porcine cervical spine under anterior-posterior shear load. Medical Engineering and Physics, 35, 910–918.10.1016/j.medengphy.2012.08.019
  • Janevic, J., Ashton-Miller, J. A., & Schultz, A. B. (1991). Large compressive preloads decrease lumbar motion segment flexibility. Journal of Orthopaedic Research, 9, 228–236. doi:10.1016/0021-9290(90)90212-L
  • Nachemson, A. (1966). The load on lumbar disks in different positions of the body. Clinical Orthopaedics and Related Research, 45, 107–122.
  • Nachemson, A. (1981). Disc pressure measurements. Spine, 6, 93–97.10.1097/00007632-198101000-00020
  • Oxland, T. R., Panjabi, M. M., Southern, E. P., & Duranceau, J. S. (1991). An anatomic basis for spinal instability: A porcine trauma model. Journal of Orthopaedic Research, 9, 452–462. doi:10.1002/jor.1100090318
  • Panjabi, M. M. (1992). The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. Journal of Spinal Disorders, 5, 390–397, discussion 397. doi:10.1097/00002517-199212000-00002
  • Panjabi, M. M., Krag, M. H., White, A. A., & Southwick, W. O. (1977). Effects of preload on load displacement curves of the lumbar spine. The Orthopedic Clinics of North America, 8, 181–192.
  • Patwardhan, A. G., Havey, R. M., Carandang, G., Simonds, J., Voronov, L. I., Ghanayem, A. J., … Paxinos, O. (2003). Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. Journal of Orthopaedic Research, 21, 540–546.10.1016/S0736-0266(02)00202-4
  • Sato, K., Kikuchi, S., & Yonezawa, T. (1999). In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine, 24, 2468–2474. doi:10.1097/00007632-199912010-00008
  • Scannell, J. P., & McGill, S. M. (2003). Lumbar posture–should it, and can it, be modified? A study of passive tissue stiffness and lumbar position during activities of daily living. Physical Therapy, 83, 907–917.
  • Schwarzer, A. C., Aprill, C. N., Derby, R., Fortin, J., Kine, G., & Bogduk, N. (1995). The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine, 20, 1878–1883.10.1097/00007632-199509000-00007
  • Smit, T. H., van Tunen, M. S., van der Veen, A. J., Kingma, I., & van Dieën, J. H. (2011). Quantifying intervertebral disc mechanics: A new definition of the neutral zone. BMC Musculoskeletal Disorders, 12, 1–10.10.1186/1471-2474-12-38
  • Tampier, C. (2006). Progressive disc herniation: An investigation of the mechanism using histochemical and microscopic techniques (Master’s thesis). University of Waterloo, Waterloo.
  • Tawackoli, W., Marco, R., & Liebschner, M. A. K. (2004). The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine, 29, 988–993. doi:10.1097/00007632-200405010-00007
  • Thompson, R. E., Barker, T. M., & Pearcy, M. J. (2003). Defining the neutral zone of sheep intervertebral joints during dynamic motions: An in vitro study. Clinical Biomechanics, 18, 89–98.10.1016/S0268-0033(02)00180-8
  • Veres, S. P., Robertson, P. A., & Broom, N. D. (2009). The morphology of acute disc herniation. Spine, 34, 2288–2296. doi:10.1097/BRS.0b013e3181a49d7e
  • Wilke, H. J., Neef, P., Caimi, M., Hoogland, T., & Claes, L. E. (1999). New in vivo measurements of pressures in the intervertebral disc in daily life. Spine, 24, 755–762. doi:10.1097/00007632-199904150-00005
  • Wilke, H. J., Wenger, K., & Claes, L. (1998). Testing criteria for spinal implants: Recommendations for the standardization of in vitro stability testing of spinal implants. European Spine Journal, 7, 148–154. doi:10.1007/s005860050045
  • Wilke, H. J., Wolf, S., Claes, L. E., Arand, M., & Wiesend, A. (1995). Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine, 20, 192–198. doi:10.1097/00007632-199501150-00011
  • Wilke, H.-J., Geppert, J., & Kienle, A. (2011). Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. European Spine Journal, 20, 1859–1868. doi:10.1007/s00586-011-1822-6
  • Yang, S.-H., Lin, C.-C., Hu, M.-H., Shih, T. T.-F., Sun, Y.-H., & Lin, F.-H. (2010). Influence of age-related degeneration on regenerative potential of human nucleus pulposus cells. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 28, 379–383. doi:10.1002/jor.20988
  • Yingling, V. R., Callaghan, J. P., & McGill, S. M. (1999). The porcine cervical spine as a model of the human lumbar spine: An anatomical, geometric, and functional comparison. Journal of Spinal Disorders, 12, 415–423.10.1097/00002517-199912050-00012