6,515
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

, & | (Reviewing Editor)
Article: 1017244 | Received 09 Nov 2014, Accepted 26 Jan 2015, Published online: 16 Mar 2015

References

  • Abolghasemi, V., Ferdowsi, S., Makkiabadi, B., & Sanei, S. (2010). On optimization of the measurement matrix for compressive sensing. In 18th EUSIPCO-2010 (pp. 23–27). Aalborg, Denmark.
  • Arash, A., & Farokh, M. (2011). Deterministic construction of binary, bipolar and ternary compressed sensing matrices. IEEE Transactions Information Theory, 57, 2360–2370. doi:10.1109/TIT.2011.2111670
  • Baraniuk, R. G., Davenport, M., DeVore, R. A., & Wakin, M. (2008). A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 28, 253–263.
  • Barre, S. (2014). Medical Imaging: Samples. Retrieved from http://www.barre.nom.fr/medical/samples
  • Ben-Haim, Z., Eldar, Y. C., & Elad, M. (2010). Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Transactions on Signal Processing, 58, 5030–5043.
  • Calderbank, R., Howard, S., & Jafarpour, S. (2010). Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE Journal of Signal Processing, 4, 358–374. doi:10.1109/jstsp.2010.2043161
  • Candes, E. J., & Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Problems, 23, 969–985.
  • Candes, E. J., Romberg, J., & Tao, T. (2006a). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, LIX, 1207–1223.
  • Candes, E. J., Romberg, J. K., & Tao, T. (2006b). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59, 1207–1223. doi:10.1002/cpa.20124
  • Candes, E. J., Tao, T., & Romberg, J. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489–509.
  • DICOM sample image sets - OsiriX. (2014). Retrieved from http://www.osirix-viewer.com/datasets
  • DICOM Test Images. (2014). Retrieved from http://support.dcmtk.org/wiki/dicom/images
  • Do, T. T., Gan, L., & Tran, T. D. (2012). Fast and efficient compressive sensing using structurally random matrices. IEEE Transactions on Signal Processing, 60, 139–154.
  • Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52, 1289–1306.
  • Duarte, M. F., Davenport, M. A., Wakin, M. B., & Baraniuk, R. G. (2006). Sparse signal detection from incoherent projections. In ICASSP. doi:10.1109/ICASSP.2006.1660651
  • Duarte-Carvajalino, J. M., & Sapiro, G. (2009). Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 18, 1395–1408. doi:10.1109/TIP.2009.2022459
  • Elad, M. (2007). Optimized projections for compressed sensing. IEEE Transactions Signal Processing, 55, 5695–5702.
  • Gan, L., Ling, C., Do, T. T., & Tran, D. T. (2009). Analysis of the statistical restricted isometry property for deterministic sensing matrices using Steins method. Retrieved from http://www.dsp.ece.rice.edu/files/cs/GanStatRIP.pdf
  • Gan, L., Do, T., & Tran, T. D. (2008). Fast compressive imaging using scrambled block Hadamard ensemble. In EUSIPCO. Lausanne, Switzerland.
  • Grgic, S., Grgic, M., & Mrak, M. (2004). Reliability of objective picture quality measures. Journal of Electrical Engineering, 55, 2–10.
  • Haupt, J., Bajwa, W. U., Raz, G., & Nowak, R. (2010). Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 56, 5862–5875.
  • Iwen, M. A. (2014). Compressed sensing with sparse binary matrices: Instance optimal error guarantees in near-optimal time. Journal of Complexity, 30(1), 1–15. doi:10.1016/j.jco.2013.08.001
  • Lorne, A., Stephen, D. H., Stephen, S., & Calderbank, R. (2009). Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery. Applied and Computational Harmonic Analysis, Elsevier, 26, 283–290.
  • Lu, W., & Kpalma, K. (2012). Sparse binary matrices of LDPC codes for compressed sensing. In J.A. Storer & M.W. Marcellin (Eds.), DCC. (p. 405), Snowbird, UT: IEEE Computer Society.
  • Mamaghanian, H., Khaled, N., Atienza, D., & Vandergheynst, P. (2011). Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Transactions on Biomedical Engineering, 58, 2456–2466.
  • Mohimani, G. H., Babaie-Zadeh, M., & Jutten, C. (2007). Fast sparse representation based on smoothed L0 norm. In Independent component analysis and signal separation lecture notes in computer science (Vol. 4666, pp. 389–396). London: Springer Berlin Heidelberg.
  • Rauhut, H. (2009). Circulant and Toeplitz matrices in compressed sensing. Retrieved from CoRR, abs/0902.4394: http://arxiv.org/abs/0902.4394
  • Rizi, F. Y., Ahmadi, N. H., & Setarehdan, S. K. (2011). Wavelet-based ultrasound image denoising: Performance analysis and comparison. In Annual International Conference of the Engineering in Medicine and Biology Society EMBC (pp. 3917–3920). Boston, MA.
  • Sample DataSet. (2014). Retrieved from http://gdcm.sourceforge.net/wiki/index.php/Sample_DataSet
  • Sebert, F., Yi, M. Z., & Leslie, Y. (2008). Toeplitz block matrices in compressed sensing and their applications in imaging. In ITAB (pp. 47–50). Shenzhen.
  • Shibin, W., Qingsong, Z., & Yaoqin, X. (2013). Evaluation of various speckle reduction filters on medical ultrasound images. In 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1148–1151). Osaka.
  • Shuang, L., Zhihui, Z., Li, G., Chang, L., & Li, Q. (2013). Projection matrix optimization for block-sparse compressive sensing. In ICSPCC (pp. 1-4). KunMing.
  • Sun, J., Shu, W., & Dong, Y. (2013). Sparse block circulant matrices for compressed sensing. IET Communications, 7, 1412–1418.
  • Xu, G., & Xu, Z. (2013). Compressed sensing matrices from Fourier matrices. IEEE Transactions on Information Theory, 469–478.
  • Xu, Y., Yin, W., & Osher, S. (2014). Learning circulant sensing kernels. Inverse Problems and Imaging, 8, 901–923. doi:10.3934/ipi.2014.8.901.
  • Yin, W., Morgan, S., Yang, J., & Zhang, Y. (2010). Practical compressive sensing with Toeplitz and circulant matrices. In Proceedings of visual communications and image processing (VCIP). San Jose, CA: SPIE.
  • Yuvarani, P., & Kumarasamy, M. (2012). Image denoising and enhancement for lung cancer detection using soft computing technique. In IET Chennai 3rd International on Sustainable Energy and Intelligent Systems (SEISCON 2012) (pp. 1–4). Tiruchengode.
  • Zelnik-Manor, L., & Eldar, Y. C. (2011). Sensing matrix optimization for block-sparse decoding. IEEE Transactions on Signal Processing, 59, 4300–4312.
  • Zhang, Z., & Rao, B. D. (2013). Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Transactions on Signal Processing, 61, 2009–2015.