5,590
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Friction-loaded cycle ergometers: Past, present and future

& | (Reviewing Editor)
Article: 1029237 | Received 30 Nov 2014, Accepted 09 Mar 2015, Published online: 13 Apr 2015

References

  • Abbiss, C. R., Quod, M. J., Levin, G., Martin, D. T., & Laursen, P. B. (2009). Accuracy of the Velotron ergometer and SRM power meter. International Journal of Sports Medicine, 30, 107–112.10.1055/s-0028-1103285
  • Adamson, G. T., & Whitney, R. J. (1971). Critical appraisal of jumping as a measure of human power. In J. Vredenbregt & J. Wartenweiler (Eds.), Medicine and sport 6: Biomechanics II (pp. 208–211). Basel: Karger.
  • Amar, J. (1909). Le rendement de la machine humaine [Mechanical efficiency of the human machine] (doctoral thesis) (in French). Baillière, Paris.
  • American College of Sports Medicine. (2007). In S. Glass & B. Dwyer (Eds.), ACSM’s metabolic calculations handbook (p. 111). Baltimore, MD: Lippincott Williams & Wilkins.
  • Åstrand, I. (1960). Aerobic work capacity in men and women with special reference to age. Acta Physiologica Scandinavica, 49( supplementum 169), 1–92.
  • Atkins, A. R., & Nicholson, J. D. (1963). An accurate constant-work ergometer. Journal of Applied Physiology, 18, 203–208.
  • Atkins, A. R., & Nünlist, A. (1966). A precision constant work-rate ergometer. Journal of Applied Physiology, 21, 1427–1430.
  • Ayalon, A., Inbar O., & Bar-Or O. (1974). Relationship among measurements of explosive strength and anaerobic power. In R. C. Nelson & C. A. Morehouse (Eds.), International series on sport sciences (Vol. 1, Biomechanics V, pp. 572–577). Baltimore, MD: University Park Press.
  • Balmer, J., Davison, R. C., Coleman, D. A., & Bird, S. R. (2000). The validity of power output recorded during exercise performance tests using a Kingcycle air-braked cycle ergometer when compared with an SRM powermeter. International Journal of Sports Medicine, 21, 195–199.10.1055/s-2000-9466
  • Bar-Or, O. (1978). A new anaerobic capacity test. Characteristics and applications. In Communication to the 21st World Congress in Sport Medicine. Brasilia.
  • Bar-Or, O. (1987). The Wingate anaerobic test: An update on methodology, reliability and validity. Sports Medicine, 4, 381–394.10.2165/00007256-198704060-00001
  • Bassett, Jr. D. R. (1989). Correcting the Wingate test for changes in kinetic energy of the Ergometer flywheel. International Journal of Sports Medicine, 10, 446–449.10.1055/s-2007-1024941
  • Beaumont, W. W. (1889). Friction-brake dynamometers. Minutes of proceedings of the institution of civil engineers, 95, 1–77.
  • Bedu, M., Fellmann, N., Spielvogel, H., Falgairette, G., Van Praagh, E., & Coudert, J. (1991). Force-velocity and 30s Wingate test in boys at high and low altitudes. Journal of Applied Physiology, 70, 1031–1037.
  • Benedict, F. G., & Cady, W. G. (1912). A bicycle ergometer with an electric brake (Issue 167, p. 44). Carnegie Institution of Washington. New York, NY: Isaac H Blanchard..
  • Benedict, F. G., & Carpenter, T. M. (1909). The influence of muscular and mental work on metabolism and the efficiency of the human body as a machine (Bulletin No. 208). US Department of Agriculture, Office of Experimental Stations.
  • Bertucci, W., Duc, S., Villerius, V., & Grappe, F. (2005). Validity and reliability of the axiom powertrain cycle ergometer when compared with an SRM powermeter. International Journal of Sports Medicine, 26, 59–65.10.1055/s-2004-817855
  • Bouny, E. (1896a). Mesure du travail dépensé dans l’emploi de la bicyclette, Note de M Bouny présenté par M Marey [Measure of the work output during the use of a bicycle, note by Mr Bouny presented by Mr Marey]. Comptes-rendus des séances de l’Académie des Sciences, 122, 1391–1396.
  • Bouny E. (1896b). Contrôle de la pédale dynamométrique de bicyclette, Note de M Bouny présenté par M Marey [Control of the dynamometric pedal of a bicycle, note by Mr Bouny presented by Mr Marey]. Comptes-rendus des séances de l’Académie des Sciences, 122, 1528–1530.
  • Brue, F., Melin, B., & Lamande, J. P. (1985). Détermination de l’aptitude différentielle aérobie-anaérobie sur un nouveau type de cyclo-ergomètre [Determination of the specific ability in aerobic and anaerobic exercises by means of a new cycle ergometer] (in French). Cinésiologie, 24, 341–345.
  • Brue, F., Melin, B., Lamande, J. P., & Philippe, Y. (1983, September). The direct determination maximal aerobic and anaerobic powers using a new mechanical cycle ergometer. In Proceedings of the 5th Meeting of RSG 4 North Atlantic Treaty Organisation, (pp. 11–15, 44), Brussels, Belgium.
  • Carpentier, J. A. M. L. (1880). Rapport fait par M Ed. Collignon sur les Freins dynamométriques de M Carpentier et M Marcel Desprez [Report presented by Mr E. Collignon on the dynamometric brakes of Mr J. Carpentier and Mr M. Desprez] (in French). Bulletin de la société d’encouragement pour l’industrie nationale, VII, 445–450.
  • Coyle, E. F., Sidossis, L. S., Horowitz, J. F., & Beltz, J. D. (1992). Cycling efficiency is related to the percentage of type I muscle fibers. Medicine and Science in Sports and Exercise, 24, 782–788.
  • Cumming, G. R., & Alexander, W. D. (1968). The calibration of bicycle ergometers. Canadian Journal of Physiology and Pharmacology, 46, 917–919.10.1139/y68-145
  • Dickinson, S. (1928). The dynamics of bicycle pedalliug. Proceedings of the Royal Society B: Biological Sciences, 103, 225–233.10.1098/rspb.1928.0037
  • Dickinson, S. (1929). The efficiency of bicycle-pedalling, as affected by speed and load. The Journal of Physiology, 67, 242–255.10.1113/jphysiol.1929.sp002565
  • Dotan, R., & Bar-Or, O. (1983). Load optimization for the wingate anaerobic test. European Journal of Applied Physiology and Occupational Physiology, 51, 409–417.10.1007/BF00429077
  • Driss, T., & Vandewalle, H. (2013). The measurement of maximal (anaerobic) power output on a cycle ergometer: A critical review. BioMed Research International, 2013(1), 1–40.10.1155/2013/589361
  • Driss, T., Vandewalle, H., Le Chevalier, J. M., & Monod, H. (2002). Force-velocity relationship on a cycle ergometer and knee-extensor strength indices. Canadian Journal of Applied Physiology, 27, 250–262.10.1139/h02-015
  • Ettema, G., & Lorås, H. W. (2009). Efficiency in cycling: A review. European Journal of Applied Physiology, 106, 1–14.10.1007/s00421-009-1008-7
  • Fenn, W. O., & Marsh, B. S. (1935). Muscular force at different speeds of shortening. The Journal of Physiology, 85, 277–297.10.1113/jphysiol.1935.sp003318
  • Fleisch, A. (1950). Ergostat à puissances constantes et multiples [Ergometer with constant and multiple power outputs] (in French). Helvetica Medica Acta series A, 17, 47–58.
  • Franklin, K. L., Gordon, R. S., Baker, J. S., & Davies, B. (2007). Accurate assessment of work done and power during a wingate anaerobic test. Applied Physiology, Nutrition and Metabolism, 32, 225–232.10.1139/h06-103
  • Gaertner, G. (1887). Über die therapeutische Verwendung der Muskelarbeit und einen neuen Apparat zu ihrer Dosierung [On the therapeutic use of muscular work and a new device for its dosage] (in German). Wiener medizinische Zeitung, 32, 607–621.
  • Gardner, A. S., Stephens, S., Martin, D. T., Lawton, E., Lee, H., & Jenkins, D. (2004). Accuracy of SRM and power tap power monitoring systems for bicycling. Medicine and Science in Sports and Exercise, 36, 1252–1258.10.1249/01.MSS.0000132380.21785.03
  • Gordon, R. S., Franklin, K. L., Baker, J. S., & Davies, B. (2004). Accurate assessment of the brake torque on a rope-braked cycle ergometer. Sports Engineering, 7, 131–138.10.1007/BF02844051
  • Granier, P., Mercier, B., Mercier, J., Anselme, F., & Prefaut, C. (1995). Aerobic and anaerobic contribution to Wingate test performance in sprint and middle distance runners. European Journal of Applied Physiology and Occupational Physiology, 70, 58–65.10.1007/BF00601809
  • Guiraud, T., Léger, L., Long, A., Thébault, N., Tremblay, J., & Passelergue, P. (2010). Vo2 requirement at different displayed power outputs on five cycle ergometer models: A preliminary study. British Journal of Sports Medicine, 44, 449–454.10.1136/bjsm.2007.044826
  • Harrison, J. Y. (1967). A constant-torque brake for use in bicycle and other ergometers. Journal of Applied Physiology, 23, 989–993.
  • Hautier, C. A., Linossier, M. T., Belli, A., Lacour, J. R., & Arsac, L. M. (1996). Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition. European Journal of Applied Physiology and Occupational Physiology, 74, 114–118.10.1007/BF00376503
  • Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B: Biological Sciences, 126, 136–195.10.1098/rspb.1938.0050
  • Hollmann, W., & Prinz, P. (1991). On the History of Spiroergometry. Computerized Cardiopulmonary Exercise Testing, 1991, 3–17.10.1007/978-3-642-85404-0
  • Holmgren, A., & Mattsson, K. H. (1954). A new ergometer with constant work load at varying pedal rate. Scandinavian Journal of Laboratory and Clinical Investigation, 6, 136–140.
  • Holzer, W., & Kalinka, M. (1935). Über ein einfaches Fahrradergometer und dessen Eichung [On a simple cycle ergometer and its calibration] (in German). Arbeitsphysiologie, 8, 778–782.
  • Hopker, J., Myers, S., Jobson, S. A., Bruce, W., & Passfield, L. (2010). Validity and reliability of the Wattbike cycle ergometer. International Journal of Sports Medicine, 31, 731–736.10.1055/s-0030-1261968
  • Hurst, H. T., & Atkins, S. (2006). Power output of field-based downhill mountain biking. Journal of Sports Sciences, 24, 1047–1053.10.1080/02640410500431997
  • Inbar, O., Dotan, R., Trousil, T., & Dvir, Z. (1983). The effect of bicycle crank-length variation upon power performance. Ergonomics, 26, 1139–1146.10.1080/00140138308963449
  • James, D. V. B., Wood, D. M., Maberly, T. C. B., & Croix, M. D. S. (2007). Optimized versus corrected peak power during friction-braked cycle ergometry in males and females. Journal of Sports Sciences, 25, 859–867.10.1080/02640410600907904
  • Jervis-Smith, F. J. (1915). Dynamometers; edited and amplified by C. V. Boys (p. 267). London: Constable.
  • Jones, S., & Passfield, L. (1998). The dynamic calibration of bicycle power measuring cranks. In S. J. Haake (Ed.), The engineering of sports (pp. 265–274). Oxford: Blackwell Science.
  • Katch, V., Weltman, A., & Traeger, L. (1976). All-out versus a steady paced cycling strategy for maximal work output of short duration. Research Quarterly of the American Association for Health, Physical Education and Recreation, 47, 164–168.
  • Katch, V., Weltman, A., Martin, R., & Gray, L. (1977). Optimal test characteristics for maximal anaerobic work on the bicycle ergometer. Research quarterly, 48, 319–327.
  • Kauffman, P., & Vondracek, M. (2005). The effect surface temperature has on kinetic friction. The Physics Teacher, 43, 173–175.10.1119/1.1869429
  • Kelso, L. E. A., Hellebrandt, F. A., & Madison, W. (1933). The recording electrodynamic brake cycle ergometer. Journal of Laboratory and Clinical Medicine, 19, 1105–1113.
  • Kirkland, A., Coleman, D., Wiles, J. D., & Hopker, J. (2008). Validity and reliability of the Ergomo®pro powermeter. International Journal of Sports Medicine, 29, 913–916.10.1055/s-2008-1038621
  • Krogh, A. (1913). A bicycle ergometer and respiration apparatus for the experimental study of muscular work. Skandinavisches Archiv Für Physiologie, 30, 375–394.10.1111/apha.1913.30.issue-3
  • Kyle, C. R., & Caiozzo, V. J. (1986). Experiments in human ergometry as applied to the design of human powered vehicles. International Journal of Sport Biomechanics, 2, 6–19.
  • Lakomy, H. K. A. (1986). Measurement of work and power output using friction-loaded cycle ergometers. Ergonomics, 29, 509–517.10.1080/00140138608968287
  • Lakomy, K. (1985). Effect of load on corrected peak power output generated on friction loaded cycle ergometers. Journal of Sports Sciences, 3, 240, Abstract.
  • Lanooy, C., & Bonjer, F. H. (1956). A hyperbolic ergometer for cycling and cranking. Journal of Applied Physiology, 9, 499–500.
  • Macintosh, B. R., Bryan, S. N., Rishaug, P., & Norris, S. R. (2001). Evaluation of the Monark Wingate ergometer by direct measurement of resistance and velocity. Canadian Journal of Applied Physiology, 26, 543–558.10.1139/h01-030
  • Marks, L. S. (1951). The mechanical engineers handbook. New York, NY: McGraw-Hill.
  • Martin, J. C., & Spirduso, W. W. (2001). Determinants of maximal cycling power: Crank length, pedaling rate and pedal speed. European Journal of Applied Physiology, 84, 413–418.10.1007/s004210100400
  • Martin, J. C., Malina, R. M., & Spirduso, W. W. (2002). Effects of crank length on maximal cycling power and optimal pedaling rate of boys aged 8–11 years. European Journal of Applied Physiology, 86, 215–217.10.1007/s00421-001-0525-9
  • Martin, J. C., Wagner, B. M., & Coyle, E. F. (1997). Inertial-load method determines maximal cycling power in a single exercise bout. Medicine and Science in Sports and Exercise, 29, 1505–1512.10.1097/00005768-199711000-00018
  • Maxwell, B. F., Withers, R. T., Ilsley, A. H., Wakim, M. J., Woods, G. F., & Day, L. (1998). Dynamic calibration of mechanically, air- and electromagnetically braked cycle ergometers. European Journal of Applied Physiology, 78, 346–352.10.1007/s004210050430
  • McDaniel, J., Durstine, J. L., Hand, G. A., & Martin, J. C. (2002). Determinants of metabolic cost during submaximal cycling. Journal of Applied Physiology, 93, 823–828.10.1152/japplphysiol.00982.2001
  • Mellerowicz, H. (1962). Ergometrie (p. 254). München-Berlin: Urban & Schwarzenberg.
  • Nakamura, Y., Mutoh, Y., & Miyashita, M. (1985). Determination of the peak power output during maximal brief pedalling bouts. Journal of Sports Sciences, 3, 181–187.10.1080/02640418508729750
  • Pearson, S. J., Cobbold, M., Orrell, R. W., & Harridge, S. D. R. (2006). Power output and muscle myosin heavy chain composition in young and elderly men. Medicine and Science in Sports and Exercise, 38, 1601–1607.10.1249/01.mss.0000227638.75983.9d
  • Pérès, G., Vandewalle, H., & Monod, H. (1981). Aspect particulier de la relation charge-vitesse lors du pédalage sur cycloergometre [Specific pattern of the force–velocity relationship during cycling on a cycle ergometer] (in French). Journal de Physiologie, 77, 10A.
  • Poncelet, J. V. (1876). Cours de mécanique appliquée aux machines, 2ème partie [Lectures on mechanics applied to machines, part 2] (in French) (p. 321). Paris: Gauthiers-Villars.
  • Ratel, S., Omari, A., Duché P., Bedu, M., & Coudert, J. (1996, May). Cycle ergometer flywheel inertia cannot explain the difference in mechanical anaerobic power between children and adults. In Proceedings of the 1st Annual Congress of European College of Sport Science (pp. 70–71), Nice.
  • Russell, J. C., & Dale, J. D. (1986). Dynamic torquemeter calibration of bicycle ergometers. Journal of Applied Physiology, 61, 1217–1220.
  • Sargeant, A. J., Hoinville, E., & Young, A. (1981). Maximum leg force and power output during short-termdynamic exercise. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, 51, 1175–1182.
  • Schoberer, U. (1998). Operating Instructions: SRM Training System. Julich: SRM.
  • Seck, D., Vandewalle, H., & Monod, H. (1991). Puissance maximale sur ergocycle et délai d'atteinte du pic de vitesse chez l'enfant et l'adulte [Maximal power on a cycle ergometer and delay to peak velocity in children and adults] (in French). Science & Sports, 6, 253–254.10.1016/S0765-1597(05)80168-6
  • Seck, D., Vandewalle, H., Decrops, N., & Monod, H. (1995). Maximal power and torque velocity relationship on a cycle ergometer during the acceleration phase of a single all-out exercise. European Journal of Applied Physiology and Occupational Physiology, 70, 161–168.10.1007/BF00361544
  • Smith, M. F., Davison, R. C., Balmer, J., & Bird, S. R. (2001). Reliability of mean power recorded during indoor and outdoor self-paced 40 km cycling time-trials. International Journal of Sports Medicine, 22, 270–274.10.1055/s-2001-13813
  • Smith, P. M., Price, M. J., Davison, R. C., Scott, D., & Balmer, J. (2007). Reproducibility of power production during sprint arm ergometry. Journal of Strength Conditioning Research, 21, 1315–1319.
  • Stapelfeldt, B., Mornieux, G., Oberheim, R., Belli, A., & Gollhofer, A. (2007). Development and evaluation of a new bicycle instrument for measurements of pedal forces and power output in cycling. International Journal of Sports Medicine, 28, 326–332.10.1055/s-2006-924352
  • Tuttle, W. W., & Wendler, A. J. (1945). The construction, calibration and use of an alternating current electrodynamic brake bicyle ergometer. Journal of Laboratory and Clinical Medicine, 30, 173–183.
  • Van Praagh, E., Fellmann, N., Bedu, M., Falgairette, G., & Coudert, J. (1990). Gender difference in the relationship of anaerobic power output to body composition in children. Pediatric Exercise Science, 70, 1031–1037.
  • Van Praagh, E., Bedu, M., Roddier, P., & Coudert, J. (1992). A simple calibration method for mechanically braked cycle ergometers. International Journal of Sports Medicine, 13, 27–30.10.1055/s-2007-1021229
  • Vandewalle, H., Heller, J., Pérès, G., & Monod, H. (1985). Effet de la longueur des manivelles sur la puissance maximale et la relation force-vitesse sur ergocycle [Effect of crank length on maximal power and the force–velocity-relationship on a cycle ergometer] (in French). Journal de Physiologie, 80, 5A–6A.
  • Vandewalle, H., Pérès, G., Heller, J., & Monod, H. (1985). All out anaerobic capacity tests on cycle ergometers. European Journal of Applied Physiology and Occupational Physiology, 54, 222–229.10.1007/BF02335934
  • Vandewalle, H., Pérès, G., & Monod, H. (1983). Relation force-vitesse lors d’exercices cycliques réalisés avec les membres supérieurs [Force–velocity relationship during cyclic exercises performed with the upper limbs] (in French). Motricité Humaine, 2, 22–25.
  • Vandewalle, H., Peres, G., Heller, J., Panel, J., & Monod, H. (1987). Force-velocity relationship and maximal power on a cycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 56, 650–656.10.1007/BF00424805
  • Vandewalle, H., Maton, B., Le Bozec, S., & Guerenbourg, G. (1991). An electromyographic study of an all-out exercise on a cycle ergometer. Archives of Physiology and Biochemistry, 99, 89–93.10.3109/13813459109145909
  • von Döbeln, W. (1954). A simple bicycle ergometer. Journal of Applied Physiology, 7, 222–224.
  • Williams, J. H., Barnes, W. S., & Signorile, J. F. (1988). A constant-load ergometer for measuring peak power output and fatigue. Journal of Applied Physiology, 65, 2343–2348.
  • Wilmore, J. H., Constable, S. H., Stanforth, P. R., Buono, M. J., Tsao, Y. W., Roby, Jr., F. B., … Ratliff, R. A. (1982). Mechanical and physiological calibration of four cycle ergometers. Medicine and Sciences in Sports and Exercises, 14, 322–325.
  • Winter, E. M., Brown, D., Roberts, N. K. A., Brookes, F. B. C., & Swaine, I. L. (1996). Optimized and corrected peak power output during friction‐braked cycle ergometry. Journal of Sports Sciences, 14, 513–521.10.1080/02640419608727738
  • Withers, R. T., Van Der Ploeg, G., & Finn, J. P. (1993). Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an air-braked ergometer. European Journal of Applied Physiology and Occupational Physiology, 67, 185–191.10.1007/BF00376665
  • Woods, G. F., Day, L., Withers, R. T., Ilsley, A. H., & Maxwell, B. F. (1994). The dynamic calibration of cycle ergometers. International Journal of Sports Medicine, 15, 168–171.10.1055/s-2007-1021041
  • Wooles, A. L., Robinson, A. J., & Keen, P. S. (2005). A static method for obtaining a calibration factor for SRM bicycle power cranks. Sports Engineering, 8, 137–144.10.1007/BF02844014
  • Yoshihuku, Y., & Herzog, W. (1996). Maximal muscle power output in cycling: A modelling approach. Journal of Sports Sciences, 14, 139–157.10.1080/02640419608727696
  • Zuntz, N. (1899). Zwei Apparate zur Dosierung und Messung menschlicher Arbeit (Bremsergometer) [Two devices for the dosage and measurement of human work (brake ergometer)] (in German). Achiv für Physiologie, 1899, 372–375.