1,376
Views
31
CrossRef citations to date
0
Altmetric
Retraction

RETRACTED ARTICLE: Finite element simulation of material flow in friction stir process of nylon 6 and nylon 6/MWCNTs compositeFootnote

| (Reviewing Editor)
Pages 1-24 | Received 31 Aug 2014, Accepted 26 Apr 2015, Published online: 22 May 2015

References

  • Arici, A., & Selale, S. (2007). Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Science and Technology of Welding and Joining, 12, 536–539.10.1179/174329307X173706
  • Arici, A., & Sinmazçelýk, T. (2005). Effects of double passes of the tool on friction stir welding of polyethylene. Journal of Materials Science, 40, 3313–3316.10.1007/s10853-005-2709-x
  • Asadi, P., Mahdavinejad, R. A., & Tutunchilar, S. (2011). Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Materials Science and Engineering: A, 528, 6469–6477.10.1016/j.msea.2011.05.035
  • Aydin, M. (2010). Effects of welding parameters and pre-heating on the friction stir welding of UHMW-polyethylene. Polymer-Plastics Technology and Engineering, 49, 595–601.10.1080/03602551003664503
  • Bagheri, A., Azdast, T., & Doniavi, A. (2013). An experimental study on mechanical properties of friction stir welded ABS sheets. Materials & Design, 43, 402–409.10.1016/j.matdes.2012.06.059
  • Bahrami, M., Besharati Givi, M. K., Dehghani, K., & Parvin, N. (2014). On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Materials & Design, 53, 519–527.10.1016/j.matdes.2013.07.049
  • Barmouz, M., & Besharati Givi, M. K. (2011). Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior. Composites Part A: Applied Science and Manufacturing, 42, 1445–1453.10.1016/j.compositesa.2011.06.010
  • Barmouz, M., Seyfi, J., Besharati Givi, M. K., Hejazi, I., & Davachi, S. M. (2011). A novel approach for producing polymer nanocomposites by in situ dispersion of clay particles via friction stir processing. Materials Science and Engineering: A, 528, 3003–3006.
  • Bozkurt, Y. (2012). The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Materials & Design, 35, 440–445.10.1016/j.matdes.2011.09.008
  • Buffa, G., Hua, J., Shivpuri, R., & Fratini, L. (2006). Design of the friction stir welding tool using the continuum based FEM model. Materials Science and Engineering: A, 419, 381–388.10.1016/j.msea.2005.09.041
  • Carlone, P., & Palazzo, G. S. (2013). Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallography, Microstructure, and Analysis, 2, 213–222.10.1007/s13632-013-0078-4
  • Cavaliere, P. (2005). Mechanical properties of friction stir processed 2618/Al2O3/20p metal matrix composite. Composites Part A: Applied Science and Manufacturing, 36, 1657–1665.10.1016/j.compositesa.2005.03.016
  • Chang, C. I., Lee, C. J., & Huang, J. C. (2004). Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Materialia, 51, 509–514.10.1016/j.scriptamat.2004.05.043
  • Fisher, F. T., Bradshaw, R. D., & Brinson, L. C. (2002). Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Applied Physics Letters, 80, 4647–4649.10.1063/1.1487900
  • Guerdoux, S., & Fourment, L. (2009). A 3D numerical simulation of different phases of friction stir welding. Modelling and Simulation in Materials Science and Engineering, 17, 075001.10.1088/0965-0393/17/7/075001
  • Izadi, H., Nolting, A., Munro, C., Bishop, D. P., Plucknett, K. P., & Gerlich, A. P. (2013). Friction stir processing of Al/SiC composites fabricated by powder metallurgy. Journal of Materials Processing Technology, 213, 1900–1907.10.1016/j.jmatprotec.2013.05.012
  • Kiss, Z., & Czigány, T. (2007). Applicability of friction stir welding in polymeric materials. Periodica Polytechnica Mechanical Engineering, 51, 15–18.
  • Kiss, Z., & Czigány, T. (2012a). Microscopic analysis of the morphology of seams in friction stir welded polypropylene. Express Polymer Letters, 6, 54–62.
  • Kiss, Z., & Czigány, T. (2012b). Effect of welding parameters on the heat affected zone and the mechanical properties of friction stir welded poly(ethylene-terephthalate-glycol). Journal of Applied Polymer Science, 125, 2231–2238.10.1002/app.36440
  • Liu, P., Shi, Q. Y., & Zhang, Y. B. (2013). Microstructural evaluation and corrosion properties of aluminium matrix surface composite adding Al-based amorphous fabricated by friction stir processing. Composites Part B: Engineering, 52, 137–143.10.1016/j.compositesb.2013.04.019
  • Lorrain, O., Favier, V., Zahrouni, H., & Lawrjaniec, D. (2010). Understanding the material flow path of friction stir welding process using unthreaded tools. Journal of Materials Processing Technology, 210, 603–609.10.1016/j.jmatprotec.2009.11.005
  • Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50, 1–78.10.1016/j.mser.2005.07.001
  • Morisada, Y., Fujii, H., Kawahito, Y., Nakata, K., & Tanaka, M. (2011). Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems. Scripta Materialia, 65, 1085–1088.10.1016/j.scriptamat.2011.09.021
  • Mostafapour, A., & Azarsa, E. (2012). A study on the role of processing parameters in joining polyethylene sheets via heat assisted friction stir welding: Investigating microstructure, tensile and flexural properties. International Journal of Physical Sciences, 7, 647–654.
  • Panneerselvam, K., & Lenin, K. (2013). Effects and defects of the polypropylene plate for different parameters in friction stir welding process. International Journal of Engineering Research and Technology, 2, 143–152.
  • Panneerselvam, K., & Lenin, K. (2014). Joining of nylon 6 plate by friction stir welding process using threaded pin profile. Materials & Design, 53, 302–307.10.1016/j.matdes.2013.07.017
  • Pashazadeh, H., Masoumi, A., & Teimournezhad, J. (2013). A 3D numerical model to investigate mechanical, thermal, and material flow characteristics in friction stir welding of copper sheets. International Journal of Automotive Engineering, 3, 328–342.
  • Rezgui, A., Ayadi, M., Cherouat, A., Hamrouni, K., Zghal, A., & Bejaoui, S. (2010). Application of Taguchi approach to optimize friction stir welding parameters of polyethylene. EPJ Web of Conferences, 6, 1–8.
  • Rezgui, M., Trabelsi, A., Ayadi, A., & Hamrouni, K. (2011). Optimization of friction stir welding process of high density polyethylene. International Journal of Production and Quality Engineering, 2, 55–61.
  • Saeedy, S., & Givi, M. (2011). Investigation of the effects of critical process parameters of friction stir welding of polyethylene. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225, 1305–1310.10.1243/09544054JEM1989
  • Shan, G. F., Yang, W., Yang, M. B., Xie, B. H., Feng, J. M., & Fu, Q. (2007). Effect of temperature and strain rate on the tensile deformation of polyamide 6. Polymer, 48, 2958–2968.10.1016/j.polymer.2007.03.013
  • Sharifitabar, M., Sarani, A., Khorshahian, S., & Shafiee Afarani, M. (2011). Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Materials & Design, 32, 4164–4172.10.1016/j.matdes.2011.04.048
  • Squeo, E., & Quadrini, F. (2009). Friction stir welding of polyethylene sheets. Galati: The Annals of DUNA˘REA DE JOS University of Galati, Fascicle V Technologies in Machine Building. ISSN 1221-4566.
  • Zhang, H. W., Zhang, Z., & Chen, J. T. (2005). The finite element simulation of the friction stir welding process. Materials Science and Engineering: A, 403, 340–348.10.1016/j.msea.2005.05.052
  • Zhang, Z., & Zhang, H. W. (2008). A fully coupled thermo-mechanical model of friction stir welding. The International Journal of Advanced Manufacturing Technology, 37, 279–293.10.1007/s00170-007-0971-6