1,804
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Magnetocaloric properties of metallic nanostructures

, , , , & | (Reviewing Editor) show all
Article: 1050324 | Received 13 Mar 2015, Accepted 05 May 2015, Published online: 29 Jun 2015

References

  • Alvarez, P., Gorria, P., Franco, V., Marcos, J. S., Perez, M. J., Sanchez Llamazares, J. L., … Blanco, J. A. (2010). Nanocrystalline Nd2Fe17 synthesized by high-energy ball milling: Crystal structure, microstructure and magnetic properties. Journal of Physics-Condensed Matter, 22, 216005, 8 pp.
  • Alvarez, P., Sánchez-Marcos, J., Sanchez Llamazares, J. L., Franco, V., Reiffers, M., Blancoand, J. A., & Gorria, P. (2010, July 6–9). 14th Czech and Slovak Conference on Magnetism. Košice, Slovakia.
  • Balli, M., Fruchart, D., Gignoux, D., Dupuis, C., Kedous-Lebouc, A., & Zach, R. (2008). Giant magnetocaloric effect in Mn1−x(Ti0.5]V0.5)xAs: Experiments and calculations. Journal of Applied Physics, 103, 103908.10.1063/1.2917323
  • Balli, M., Fruchart, D., Gignoux, D., & Zach, R. (2009). The “colossal” magnetocaloric effect in Mn1−xFexAs: What are we really measuring? Applied Physics Letters, 95, 072509.10.1063/1.3194144
  • Bedanta, S., & Kleemann, W. (2009). Supermagnetism. Journal of Physics D-Applied Physics, 42, 013001.10.1088/0022-3727/42/1/013001
  • Bennett, L. H., McMichael, R. D., Swartzendruber, L. J., Hua, S., Lashmore, D. S., Shapiro, A. J., … Nikitenko, V. I. (1995). Magneto-optical indicator film observation of domain structure in magnetic multilayers. Applied Physical Letters, 66, 888–890.
  • Bennett, L. H., McMichael, R. D., Swartzendruber, L. J., & Shull, R. D. (1992). Monte Carlo and mean field calculations of the magnetocaloric effect of ferromagnetically interacting clusters. Journal of Magnetism and Magnetic Materials, 104–107, 1094–1095.10.1016/0304-8853(92)90504-H
  • Bennett, L. H., McMichael, R. D., Tang, H. C., & Watson, R. E. (1994). Monte Carlo simulations of the magnetocaloric effect in superferromagnetic clusters having uniaxial magnetic anisotropy. Journal of Applied Physics, 75, 5493–5495.10.1063/1.355667
  • Bratko, M., Morrison, K., de Campos, A., Gama, S., Cohen, L. F., & Sandeman, K. G. (2012). History dependence of directly observed magnetocaloric effects in (Mn, Fe)As. Applied Physics Letters, 100, 252409.10.1063/1.4729893
  • Canepa, F., Cirafici, S., Napoletano, M., & Merlo, F. (2002). Magnetocaloric properties of Gd7Pd3 and related intermetallic compounds. IEEE Transactions on Magnetics, 38, 3249–3251.
  • Caron, L., Trung, N. T., & Brück, E. (2011). Pressure-tuned magnetocaloric effect in Mn. Physical Review B, 84, 020414(R).10.1103/PhysRevB.84.020414
  • Chen, X., Sahoo, S., Kleemann, W., Cardoso, S., & Freitas, P. P. (2004). Universal and scaled relaxation of interacting magnetic nanoparticles. Physical Review B, 70, 172411.10.1103/PhysRevB.70.172411
  • Dagula, W., Tegus, O., Fuquan, B., Zhang, L., Si, P. Z., Zhang, M., … Buschow, K. H. J. (2005). Magnetic-entropy change in Mn1.1Fe0.9P1-xGex compounds. IEEE Transactions on Magnetics, 41, 2778–2780.
  • Dagula, W., Tegus, O., Li, X. W., Song, L., Brück, E., Cam Thanh, D. T., … Buschow, K. H. J. (2006). Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5−xSix(x=0-0.3) compounds. Journal of Applied Physics, 99, 08Q105–08Q105-3.
  • Della Torre, E., Bennett, L. H., & Jin, Y. (2012). An effect of particle size on the behavior of ferromagnetic materials. Journal of Magnetism and Magnetic Materials, 324, 2189–2192.10.1016/j.jmmm.2012.02.010
  • Dung, N. H., Zhang, L., Ou, Z. Q., Brück, E., & Zhang, J. X. (2011). From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds. Applied Physics Letters, 99, 092511.10.1063/1.3634016
  • Franco, V., Pirota, K. R., Prida, V. M., Neto, A. Conde, A., Knobel, M., … Vazquez, M. (2008). Tailoring of magnetocaloric response in nanostructured materials: Role of anisotropy. Physical Review B, 77, 104434.10.1103/PhysRevB.77.104434
  • Fujieda, S., Fujita, A., & Fukamichi, K. (2007). Enhancement of magnetocaloric effects in La1−zPrz(Fe0.88Si0.12)13 and their hydrides. Journal of Applied Physics, 102, 023907.10.1063/1.2753590
  • Fujieda, S., Fujita, A., Fukamichi, K., & Suzuki, S. (2011). Influence of homogenization of microstructural composition on hydrogen absorption into La(FexSi1−x)13 magnetic refrigerants. IEEE Transactions on Magnetics, 47, 2459–2462.
  • Fujita, A., Fujieda, S., Hasegawa, Y., & Fukamichi, K. (2003). Itinerant-electron metamagnetic transition and large magnetocaloric effects in La.FexSi1àx.13 compounds and their hydrides. Physical Review B, 67, 104416.10.1103/PhysRevB.67.104416
  • Gama, S., Coelho, A. A., de Campos, A., Carvalho, A. M. G., Gandra, F. C. G., von Ranke, P. J., & de Oliveira, N. A. (2004). Pressure-induced colossal magnetocaloric effect in MnAs. Physical Review Letters, 93, 237202.10.1103/PhysRevLett.93.237202
  • Gorria, P., Sánchez Llamazares, J., Álvarez, P. A., Pérez, M. J., Sánchez Marcos, J. S., & Blanco, J. A. (2008). Relative cooling power enhancement in magneto-caloric nanostructured Pr2Fe17. Journal of Physics D: Applied Physics, 41, 192003, 5 pp.10.1088/0022-3727/41/19/192003
  • Gribanov, I. F., Golovchan, A. V., Varyukhin, D. V., Val’kov, V. I., Kamenev, V. I., Sivachenko, A. P., … Mityuk, V. I. (2009). Magnetic and magnetocaloric properties of the alloys Mn2−xFexP0.5As0.5 (0≤x≤0.5). Low Temperature Physics, 35, 786–791.10.1063/1.3253401
  • Gschneidner, Jr., K. A., Pecharsky, V. K., Pecharsky, A. O., Zimm, C. B. (1999). Recent developments in magnetic refrigeration. Materials Science Forum, 315–317, 69–76.10.4028/www.scientific.net/MSF.315-317
  • Gubin, S. P., Koksharov, Y. A, Khomutov, G. B., & Yurkov, Y. G. (2005). Magnetic nanoparticles: Preparation, structure and properties. Russian Chemical Reviews, 74, 489–520.10.1070/RC2005v074n06ABEH000897
  • Hu, F-x., Shen, B-g., Sun, J-r., Wang, G-j., & Cheng, Z-h. (2002). Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1. Journal of Applied Physics, 80, 826–828.
  • Hu, F. X., Gao, J., Qian, X. L., Ilyn, M., Tishin, A. M., Sun, J. R., & Shen, B. G. (2005). Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1−x Cox)11.9 Si1.1. Journal of Applied physics, 97, 10M303.
  • Kim, Y. K., Wada, H., & Itoh, S. (2007). Shock compaction of MnAs1−xSbx powder using underwater shock wave. AIP Conference Proceedings, 955, 1105–1108.
  • Li, J. Q., Sun, W. A., Jian, Y. X., Zhuang, Y. H., Huang, W. D., & Liang, J. K. (2006). The giant magnetocaloric effect of Gd5Si1.95Ge2.05 enhanced by Sn doping. Journal of Applied Physics, 100, 073904.10.1063/1.2355430
  • Lima Sharma, A. L., Gama, S., Coelho, A. A., & de Campos, A. (2008). Irreversibility in cooling and heating processes in the magnetocaloric MnAs and alloys. Applied Physics Letters, 93, 261910.10.1063/1.3058712
  • McMichael, R. D., Shull, R. D., Swartzendruber, L. J., Bennett, L. H., & Watson, R. E. (1992). Magnetocaloric effect in superparamagnets. Journal of Magnetism and Magnetic Materials, 111, 29–33.10.1016/0304-8853(92)91049-Y
  • Mejía, C., Gomes, A. M., Reis, M. S., & Rocco, D. L. (2011). Fe/Cr substitution in MnAs compound: Increase in the relative cooling power. Applied Physics Letters, 98, 102515.10.1063/1.3560309
  • Michalski, S., Skomski, R., Li, X-Zh, Le Roy, D., Mukherjee, T., Binek, Ch, & Sellmyer, D. J. (2012). Isothermal entropy changes in nanocomposite Co:Ni67Cu33. Journal of Applied Physics, 111, 07A930.
  • Mitsiuk, V. I., Govor, G. A., & Budzyński, M. (2013). Phase transitions and magnetocaloric effect in MnAs, MnAs0.99P0.01, and MnAs0.98P0.02 single crystals. Inorganic Materials, 49, 14–17.10.1134/S002016851301007X
  • Mosca, D. H., Vidal, F., & Etgens, V. H. (2008). Strain engineering of the magnetocaloric effect in MnAs epilayers. Physical Review Letters, 101, 125503.10.1103/PhysRevLett.101.125503
  • Mukherjee, T., Sahoo, S., Skomski, R., Sellmyer, D. J., & Binek, C. (2009). Magnetocaloric properties of Co/Cr superlattices. Physical Review B, 79, 144406.10.1103/PhysRevB.79.144406
  • Petracic, O., Chen, X., Bedanta, S., Kleemann, W., Sahoo, S., Cardoso, S., & Freitas, P. P. (2006). Collective states of interacting ferromagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 300, 192–197.10.1016/j.jmmm.2005.10.061
  • Ramasamy, K., Mazumdar, D., Bennett, R. D., & Gupta, A. (2012). Syntheses and magnetic properties of Cr2Te3 and CuCr2Te4 nanocrystals. Chemical Communications, 48, 5656–5658.10.1039/c2cc32021e
  • Recour, Q., Mazet, T., & Malaman, B. (2008). Magnetic and magnetocaloric properties of Mn3−xFexSn2 (0.1 ≤ x ≤ 0.9). Journal of Physics D: Applied Physics, 41, 185002, 5 pp.
  • Rong, C-B., Li, Y., & Ping Liu, J. (2007). Curie temperatures of annealed FePt nanoparticle systems. Journal of Applied Physics, 101, 09K505.
  • Rongm, C-B., & Ping Liu, J. (2007). Temperature- and magnetic-field-induced phase transitions in Fe-rich FePt alloys. Applied Physics Letters, 90, 222504.
  • Samanta, T., Dubenko, I., Quetz, A., Stadler, S., & Ali, N. (2012). Giant magnetocaloric effects near room temperature in Mn1−xCuxCoGe. Applied Physics Letters, 101, 242405.10.1063/1.4770379
  • Samanta, T., Dubenko, I., Quetz, A., Stadler, S., & Ali, N. (2013). Large magnetocaloric effects over a wide temperature range in MnCo1−xZnxGe. Journal of Applied Physics, 113, 17A922.
  • Sánchez-Valdés, C. F., Ibarra-Gaytán, P. J., Llamazares, J. L. S., Ávalos-Borja, M., Álvarez-Alonso, P., & Blanco, J. A. (2014). Enhanced refrigerant capacity in two-phase nanocrystalline/amorphous NdPrFe17 melt-spun ribbons. Applied Physics Letters, 104, 212401.10.1063/1.4879544
  • Saravanan, P., Gopalan, R., & Chandrasekaran, V. (2008). Synthesis and characterisation of nanomaterials. Defence Science Journal, 58, 504–516.10.14429/dsj
  • Shir, F., Yanik, L., Bennett, L. H., Della Torre, E., & Shull, R. D. (2003). Room temperature active regenerative magnetic refrigeration: Magnetic nanocomposites. Journal of Applied Physics, 93, 8295–8297.10.1063/1.1556258
  • Shull, R. D. (1993). Magnetocaloric effect of ferromagnetic particles. IEEE Transactions on Magnetics, 29, 2614–2615.10.1109/20.280849
  • Shull, R. D., Swartzendruber, L. J., & Bennett, L. H. (1991). The magnetocaloric effect in nanocomposites. In Proceedings of the Sixth International Cryocoolers Conference (pp. 231–246). Annapolis, MD.
  • Skomski, R., Binek, C., Mukherjee, T., Sahoo, S., & Sellmyer, D. J. (2008). Temperature- and field-induced entropy changes in nanomagnets. Journal of Applied Physics, 103, 07B329.
  • Sougrati, M. T., Hermann, R. P, Grandjean, F., Long, G. J, Bruck, E., Tegus, O., … Buschow, K. H. J. (2008). A structural, magnetic and Mössbauer spectral study of the magnetocaloric Mn1.1Fe0.9P1-xGex compounds. Journal of Physics-Condensed Matter, 20, 475206, 9 pp.
  • Sun, N. K., Cui, W. B., Li, D., Geng, D. Y., Yang, F., & Zhang, Z. D. (2008). Giant room-temperature magnetocaloric effect in Mn1−xCrxAs. Applied Physics Letters, 92, 072504.10.1063/1.2884524
  • Sun, N. K., Liu, F., Gao, Y. B., Cai, Z. Q., Du, B. S., Xu, S. N., & Si, P. Z. (2012). Effect of microstrain on the magnetism and magnetocaloric properties of MnAs0.97P0.03. Applied Physics Letters, 100, 112407.10.1063/1.3695039
  • Tocado, L., Palacios, E., & Burriel, R. (2006). Adiabatic measurement of the giant magnetocaloric effect in MnAs. Journal of Thermal Analysis and Calorimetry, 84, 213–217.10.1007/s10973-005-7180-z
  • Tocado, L., Palacios, E., & Burriel, R. (2009). Entropy determinations and magnetocaloric parameters in systems with first-order transitions: Study of MnAs. Journal of Applied Physics, 105, 093918.10.1063/1.3093880
  • Trung, N. T., Ou, Z. Q., Gortenmulder, T. J., Tegus, O., Buschow, K. H. J., & Brück, E. (2009). Tunable thermal hysteresis in MnFe(P,Ge) compounds. Applied Physics Letters, 94, 102513.10.1063/1.3095597
  • Ucar, H., Craven, M., Laughlin, D. E., & Mchenry, M. E. (2014). Effect of Mo addition on structure and magnetocaloric effect in γ-FeNi nanocrystals. Journal of Electronic Materials, 43, 137–141.
  • Ucar, H., Ipus, J. J., France, V., Mchenry, M. E., & Laughlin, D. E. (2012). Overview of amorphous and nanocrystalline magnetocaloric materials operating near room temperature. JOM Journal of the Minerals, Metals and Materials Society, 64, 782–788.
  • Ucar, H., Ipus, J. J., Laughlin, D. E., & McHenry, M. E. (2013). Tuning the Curie temperature in −FeNi nanoparticles for magnetocaloric applications by controlling the oxidation kinetics. Journal of Applied Physics, 113, 17A918-17A918-3.
  • Wada, H., Matsuo, S., & Mitsuda, A. (2009). Pressure dependence of magnetic entropy change and magnetic transition in MnAs1−x Sbx. Physical Review B, 79, 092407.10.1103/PhysRevB.79.092407
  • Yan, A., Müller, K-H., Schultz, L., & Gutfleisch, O. (2006). Magnetic entropy change in melt-spun MnFePGe. Journal of Applied Physics, 99, 08K903–08K903-4.
  • Yue, M., Li, Z. Q., Xu, H., Huang, Q. Z., Liu, X. B., Liu, D. M., & Zhang, J. X. (2010). Effect of annealing on the structure and magnetic properties of Mn1.1Fe0.9P0.8Ge0.2 compound. Journal of Applied Physics, 107, 09A939.
  • Yue, M., Liu, D., Huang, Q., Wang, T., Hu, F., Li, J., … Zhang, J. (2013). Structure evolution and entropy change of temperature and magnetic field induced magneto-structural transition in Mn1.1Fe0.9P0.76Ge0.24. Journal of Applied Physics, 113, 043925.10.1063/1.4788803
  • Zeng, H., Kuang, C., Zhang, J., & Yue, M. (2012). Magnetocaloric effect in bulk nanocrystalline Gd metals by spark plasma sintering. Nanoscience Methods, 1, 16–24.10.1080/17458080.2010.515251
  • Zhang, H., Long, Y., Niu, E., Shao, X. P., Shen, J., Hu, F. X., … Shen, B. G. (2013). Influence of particle size on the hydrogenation in La(Fe, Si)13 compounds. Journal of Applied Physics, 113, 17A911.
  • Zhang, H., Shen, B. G., Xu, Z. Y., Zheng, X. Q., Shen, J., Hu, F. X., … Long, Y. (2012). Reduction of hysteresis loss and large magnetocaloric effect in the C- and H-doped La(Fe, Si)13 compounds around room temperature. Journal of Applied Physics, 111, 07A909.
  • Zhao, J-l., Shen, J., Hu, F-x., Li, Y-x., Sun, J-r., & Shen, B-g. (2010). Reduction of magnetic hysteresis loss in La0.5Pr0.5Fe11.4Si1.6Hx hydrides with large magnetocaloric effects. Journal of Applied Physics, 107, 113911.10.1063/1.3374635