1,538
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Modeling friction factor in pipeline flow using a GMDH-type neural network

, ORCID Icon, & | (Reviewing Editor)
Article: 1056929 | Received 04 Mar 2015, Accepted 16 May 2015, Published online: 18 Jun 2015

References

  • Atashkari, K., Nariman-Zadeh, N., Gölcü, M., Khalkhali, A., & Jamali, A. (2007). Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms. Energy Conversion and Management, 48, 1029–1041.10.1016/j.enconman.2006.07.007
  • Bilgil, A., & Altun, H. (2008). Investigation of flow resistance in smooth open channels using artificial neural networks. Flow Measurement and Instrumentation, 19, 404–408.10.1016/j.flowmeasinst.2008.07.001
  • Colebrook, C. F. (1939). Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. Journal of the ICE, 11, 133–156.10.1680/ijoti.1939.13150
  • Davidson, J. W., Savic, D., & Walters, G. A. (1999). Method for the identification of explicit polynomial formulae for the friction in turbulent pipe flow. Journal of Hydroinformatics, 1, 115–126.
  • Fadare, D. A., & Ofidhe, U. I. (2009). Artificial neural network model for prediction of friction factor in pipe flow. Journal of Applied Sciences, 5, 662–670.
  • Farlow, S. J. (1984). Self-organizing method in modeling: GMDH type algorithm. New York, NY: Marcel Dekker.
  • Fausett, L. (1993). Fundamentals of neural networks. Upper Saddle River, NJ: Prentice Hall.
  • Haaland, S. E. (1983). Simple and explicit formulas for the friction factor in turbulent pipe flow. Journal of Fluids Engineering, 105, 89–90.10.1115/1.3240948
  • Iba, H., DeGaris, H., & Sato, T. (1996). A numerical approach to genetic programming for system identification. Evolutionary Computation, 3, 417–452.
  • Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE Transactions on Systems, Man, and Cybernetics, 1, 364–378.10.1109/TSMC.1971.4308320
  • Jamali, A., Nariman-zadeh, N., Darvizeh, A., Masoumi, A., & Hamrang, S. (2009). Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process. Engineering Applications of Artificial Intelligence, 22, 676–687.10.1016/j.engappai.2008.11.005
  • Mittal, G. S., & Zhang, J. (2007). Friction factor prediction for Newtonian and non-Newtonian fluids in pipe flows using neural networks. International Journal of Food Engineering, 3(1), 1–18.
  • Nariman-Zadeh, N., Darvizeh, A., & Ahmad-Zadeh, G. R. (2003). Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 217, 779–790.10.1243/09544050360673161
  • Nariman-Zadeh, N., Darvizeh, A., Jamali, A., & Moeini, A. (2005). Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. Journal of Materials Processing Technology, 164–165, 1561–1571.10.1016/j.jmatprotec.2005.02.020
  • Onwubolu, G. C. (2009). Hybrid self-organizing modeling systems. Berlin-Heidelberg: Springer-Verlag.10.1007/978-3-642-01530-4
  • Özger, M., & Yildirim, G. (2009). Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing techniques. Advances in Engineering Software, 40, 281–287.
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.
  • Sablani, S. S., & Shayya, W. H. (2003). Neural network based non-iterative calculation of the friction factor for power law fluids. Journal of Food Engineering, 57, 327–335.10.1016/S0260-8774(02)00347-3
  • Sablani, S. S., Shayya, W. H., & Kacimov, A. (2003). Explicit calculation of the friction factor in pipeline flow of Bingham plastic fluids: A neural network approach. Chemical Engineering Science, 58, 99–106.10.1016/S0009-2509(02)00440-2
  • Samadianfard, S. (2012). Gene expression programming analysis of implicit Colebrook–White equation in turbulent flow friction factor calculation. Journal of Petroleum Science and Engineering, 92–93, 48–55.10.1016/j.petrol.2012.06.005
  • Shayya, W. H., & Sablani, S. S. (1998). An artificial neural network for non-iterative calculation of the friction factor in pipeline flow. Computers and Electronics in Agriculture, 21, 219–228.10.1016/S0168-1699(98)00032-5
  • Shayya, W. H., Sablani, S. S., & Campo, A. (2005). Explicit calculation of the friction factor for non-Newtonian fluids using artificial neural networks. Developments in Chemical Engineering and Mineral Processing, 13, 5–20.
  • Tufail, M., & Ormsbee, L. E. (2006). A fixed function set genetic algorithm (FFSGA) approach for function approximation. Journal of Hydroinformatics, 8, 193–206.
  • Vatankhah, A. R. (2014). Comment on “Gene expression programming analysis of implicit Colebrook–White equation in turbulent flow friction factor calculation”. Journal of Petroleum Science and Engineering, 124, 402–405.10.1016/j.petrol.2013.12.001
  • White, F. M. (1998). Fluid mechanics (4th ed.). Boston, MA: McGraw-Hill.
  • Yazdi, M., & Bardi, A. (2011). Estimation of friction factor in pipe flow using artificial neural networks. Canadian Journal on Automation, Control and Intelligent Systems, 2, 52–56.
  • Yuhong, Z., & Wenxin, H. (2009). Application of artificial neural network to predict the friction factor of open channel flow. Communications in Nonlinear Science and Numerical Simulation, 14, 2373–2378.10.1016/j.cnsns.2008.06.020