726
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Performance of strain hardening cement-based composite (SHCC) under various exposure conditions

& ORCID Icon | (Reviewing Editor)
Article: 1345608 | Received 03 May 2017, Accepted 19 Jun 2017, Published online: 06 Jul 2017

References

  • Arya, C., & Ofori-Darko, F. K. (1996). Influence of crack frequency on reinforcement corrosion in concrete. Cement and Concrete Research, 26, 345–353.10.1016/S0008-8846(96)85022-8
  • ASTM C1437-15. (2015). Standard test method for flow of hydraulic cement mortar. West Conshohocken, PA: ASTM International.
  • ASTM C185-01. (2015). Standard test method for air content of hydraulic cement mortar. West Conshohocken, PA: ASTM International.
  • ASTM C876. (2009). Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. West Conshohocken, PA: ASTM International.
  • Audenaert, K., Marsavina, L., & De Schutter, G. (2009). Influence of cracks on the service life of concrete structures in a marine environment. Key Engineering Materials, 399, 153–160.10.4028/www.scientific.net/KEM.399
  • Aziz, M. A. E., Aleem, S. A. E., Heikal, M., & Didamony, H. E. (2005). Hydration and durability of sulphate-resisting and slag cement blends in Caron’s Lake water. Cement and Concrete Research, 35, 1592–1600.10.1016/j.cemconres.2004.06.038
  • Boshoff, W. P. (2007). Time-dependant behaviour of engineered cement-based composite (PhD thesis). Stellenbosch: Department of Civil Engineering, Stellenbosch University.
  • Bossio, A., Monetta, T., Bellucci, F., Lignola, G. P., & Prota, A. (2015). Modeling of concrete cracking due to corrosion process of reinforcement bars. Cement and Concrete Research, 71, 78–92.10.1016/j.cemconres.2015.01.010
  • Broomfield, J. P. (2007). Corrosion of steel in concrete understanding, investigating and repair (2nd ed.). New York, NY: Taylor & Francis.
  • BS EN 196-1:2016. (2016). Methods of testing cement. Part 1: Determination of strength. BSI Standards Limited. ISBN 9780580845802.
  • Chen, D., & Mahadevan, S. (2008). Chloride-induced reinforcement corrosion and concrete cracking simulation. Cement and Concrete Composites, 30, 227–238.10.1016/j.cemconcomp.2006.10.007
  • DIN 52617. (1987). Bestimmung des Wasseraufnahmekoeffizienten von Baustoffen (German).
  • DIN CEN/TS 12390-9. (2006). Frost und Frost Tausalz Widerstand Abwitterung (German).
  • Elsener, B., Andrade, C., Gulikers, J., Polder, R., & Raupach, M. (2003). Half-cell potential measurements – Potential mapping on reinforced concrete structures. Materials and Structures, 36, 461–471.10.1007/BF02481526
  • Glass, G. K., & Buenfeld, N. R. (1997). Chloride threshold level for corrosion of steel in concrete. Corrosion Science, 39, 1001–1013.10.1016/S0010-938X(97)00009-7
  • Kanakubo, T., Kabele, P., Fukuyama, H., Uchida, Y., Suwada, H., & Slowik, V. (2003). Strain hardening cement composite: Structural design and performance. In K. Rokugo & T. Kanda (Eds.), RILEM state-of-the-art report (Vol. 6, pp. 1–90). Dordrecht: Springer
  • Kobayashi, K., Iizuka, T., Kurachi, H., & Rokugo, K. (2010). Corrosion protection performance of high performance fibre reinforced cement composites as a repair material. Cement and Concrete Composites, 32, 411–420.10.1016/j.cemconcomp.2010.03.005
  • Kunieda, M., & Rokugo, K. (2006). Recent progress on HPFRCC in Japan. Journal of Advanced Concrete Technology, 4, 19–33.10.3151/jact.4.19
  • Lepech, M., & Li, V. C. (2009). Water permeability of engineered cementitious composites. Cement and Concrete Composites, 31, 744–753.10.1016/j.cemconcomp.2009.07.002
  • Li, V. C. (1993). From micromechanics to structural Engineering – The design of cementitious composites for civil engineering applications. Journal of Structural Mechanics and Earthquake Engineering, 10, 37–48.
  • Li, V. C., Mishra, D. K., & Wu, H. (1995). Matrix design for pseudo-strain-hardening reinforced cementitious composites. Materials and Structures, 28, 586–595.10.1007/BF02473191
  • Mechtcherine, V. (2012). Towards a durability framework for structural elements and structures made of strengthened with high-performance fibre-reinforced composites. Construction and Building Materials, 31, 94–104.10.1016/j.conbuildmat.2011.12.072
  • Mechtcherine, V., Silva, F. A., Butler, M., Zhu, D., Mobasher, B., Gao, S. L., & Mader, E. (2011). Behaviour of strain hardening cement-based composite under high strain rates. Journal of Advanced Concrete Technology, 9, 51–62.10.3151/jact.9.51
  • Neville, A. M. (2003). Properties of Concrete (5th ed.). Harlow: Prentice Hall.
  • Paul, S. C. (2015). The role of cracks and chlorides in the corrosion of reinforced strain hardening cement based composites (PhD thesis). Stellenbosch: Department of Civil Engineering, Stellenbosch University.
  • Paul, S. C., & van Zijl, G. P. A. G. (2013). mechanically induced cracking behaviour in fine and coarse sand strain hardening cement based composites (SHCC) at different load levels. Journal of Advanced Concrete Technology, 11, 301–311.10.3151/jact.11.301
  • Paul, S. C., & van Zijl, G. P. A. G. (2014). Crack formation and chloride induced corrosion in reinforced strain hardening cement-based composites (R/SHCC). Journal of Advanced Concrete Technology, 12, 340–351.10.3151/jact.12.340
  • Paul, S. C., & van Zijl, G. P. A. G. (2016). Chloride-induced corrosion modelling of cracked reinforced SHCC. Archives of Civil and Mechanical Engineering, 16, 734–742.10.1016/j.acme.2016.04.016
  • Paul, S. C., van Zijl, G. P. A. G., Babafemi, A. J., & Tan, M. J. (2016). Chloride ingress in cracked and uncracked SHCC under cyclic wetting-drying exposure. Construction and Building Materials, 114, 232–240.10.1016/j.conbuildmat.2016.03.206
  • Paul, S. C., Babafemi, A. J., Conradie, K., & van Zijl, G. P. A. G. (2017). Applied voltage on corrosion mass loss and cracking behaviour of steel reinforced SHCC and mortar specimens. Journal of Materials in Civil Engineering. doi:10.1061/(ASCE)MT.1943-5533.0001807
  • Portland Cement Association (1998). Control of air content in concrete. Concrete Technology Today, 19(1), 1–8.
  • Sahmaran, M., & Li, V. C. (2009). Influence of microcracking on water absorption and sorptivity of ECC. Materials and Structures, 42, 593–603.10.1617/s11527-008-9406-6
  • Schiessl, P., & Raupach, M. (1997). Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete. ACI Materials Journal, 94, 56–62.
  • Thomas, M. (1996). Chloride thresholds in marine concrete. Cement and Concrete Research, 26, 513–519.10.1016/0008-8846(96)00035-X
  • van Zijl, G. P., Wittmann, F. H., Oh, B. H., Kabele, P., Toledo Filho, R. D., Fairbairn, E. M., ... Lepech, M. D. (2012). Durability of strain-hardening cement-based composites (SHCC). Materials and Structures, 45, 1447–1463.10.1617/s11527-012-9845-y
  • Vidal, T., Castel, A., & Francois, R. (2004). Analyzing crack width to predict corrosion in reinforced concrete. Cement and Concrete Research, 34, 165–174.10.1016/S0008-8846(03)00246-1
  • Wang, K., Jansen, D. C., & Shah, S. P. (1997). Permeability study of cracked concrete. Cement and Concrete Research, 27, 381–393.10.1016/S0008-8846(97)00031-8
  • Wittmann, F. H., Wang, P., Zhang, P., Zhao, T., & Beltzung, F. (2011). Capillary absorption and chloride penetration into neat and water repellent SHCC under imposed strain. In R. D. Toledo Filho, F. A. Silva, E. A. B. Koenders, and E. M. R. Fairbairn (Eds.), 2nd International RILEM Conference on Strain Hardening Cementitious Composites (SHCC2-Rio) (pp. 165–172). Rio de Janeiro: RILEM Publications SARL.
  • Zhang, P., Wittmann, F. H., Zhao, T. J., Lehmann, E. H., Tian, L., & Vontobel, P. (2010). Observation and quantification of water penetration into strain hardening cement-based composites (SHCC) with multiple cracks by means of neutron radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 620, 414–420.10.1016/j.nima.2010.04.119