632
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Numerical models performance to predict drying liquid water in porous building materials: Comparison of experimental and simulated drying water content profiles

, ORCID Icon & ORCID Icon | (Reviewing Editor)
Article: 1365572 | Received 26 Jun 2017, Accepted 05 Aug 2017, Published online: 23 Aug 2017

References

  • Barreira, E., Delgado, J. M. P. Q., & de Freitas, V. P. (2014). Wetting and drying kinetics of building materials. Drying and wetting of building materials and components. Part of building pathology and rehabilitation book series (BUILDING, Vol 4, pp. 51–69). Switzerland: Springer.
  • Becker, T. W., & Kaus, B. J. P. (2014). Numerical modeling of earth systems, An introduction to computational methods with focus on solid Earth applications of continuum mechanics (Lecture notes for USC GEOL557). Los Angeles, CA: University of Southern California
  • Berthier, J. (1980). Diffusion de vapeur au travers des parois–Condensations (REEF, Vol. II, Sciences Bâtiment). Paris: CSTB.
  • Crank, J., & Nicolson, P. (1997). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advanced Computational Mathematics, 6, 207–226.
  • Crausse, P. (1983, January). Étude fondamentale des transferts couplés de chaleur et d’humidité en milieux poreux non saturé (Thèses d’État). Institut National Polytechnique de Toulouse, Toulouse.
  • Cussler, E. L. (1997). Diffusion: Mass transfer in fluid systems (2nd ed.). Cambridge: Cambridge University Press.
  • Daian, J. (1986). François – Processus de condensation et transfert d′eau dans un matériaux meso et macro poreux. Étude expérimentale du mortier de ciment (Thèse). Institut National polytechnique de Grenoble, Grenoble.
  • Darolles, D. (1987). Couplages transferts de chaleur e de masse à la surface de matériaux poreux utilisés en génie civil lor du séchage en ecoulements turbulents (Thèse). Université Paul Sabatier, Toulouse III.
  • De Freitas, V. P., Abrantes, V., & Crausse, P. (1996). Moisture migration in building walls—Analysis of the interface phenomena. Building and Environment, 31, 99–108.10.1016/0360-1323(95)00027-5
  • De Vries, D. A. (1958). Simultaneous transfer of heat and moisture in porous media. Eos, Transactions American Geophysical Union, 39, 909–916.10.1029/TR039i005p00909
  • Èerný, R., Maděra, J., Kočí, J., & Vejmelková, E. (2009). Heat and moisture transport in porous materials involving cyclic wetting and drying. WIT Transactions on Modelling and Simulation, 48, 3–12.
  • Freitas, V. P. D. (1992). Moisture transfer in building walls–Interface phenomenon analysis (PhD Thesis). FEUP, Porto (in Portuguese).
  • Gonçalves, T. D., Brito, V., Vidigal, F., Matias, L., & Faria, P. (2015). Evaporation from porous building materials and its cooling potential. Journal of Materials in Civil Engineering, 27(8), 04014222.10.1061/(ASCE)MT.1943-5533.0001174
  • Guiné, R. (2010). Analysis of the drying kinetics of S. Bartolomeu pears for different drying systems. EJournal of Environmental, Agricultural and Food Chemistry, 9, 1772–1783.
  • Hall, C., Hoff, W. D., & Nixon, M. R. (1984). Water movement in porous building materials-VI. Evaporation and drying in brick and block materials. Building and Environment, 19, 13–20.
  • Implicit methods: The crank-nicolson algorithm. (2015, June). Retrieved from https://www.dynamicearth.de/compgeo/Tutorial/Day2/cranknicholson.pdf
  • Karoglou, M., Moropoulou, A., Maroulis, Z. B., & Krokida, M. K. (2005). Drying kinetics of some building materials. Drying Technology, 23, 305–315.10.1081/DRT-200047926
  • Kooi, V. D. (1971). Moisture transport in cellular concrete roofs (Thesis). Delft: Eindhoven University of Technology, Waltman.
  • Landman, K. A., Pel, L., & Kaasschieter, E. F. (2001). Analytic modelling of drying of porous materials. Mathematical Engineering in Industry, 8, 89–122.10.1163/156856401316891916
  • Maroulis, Z. B., & Saravacos, G. D. (2005). Drying kinetics of some building materials. Brazilian Journal of Chemical Engineering, 22, 203–208.
  • Matiasovsky, P., & Koronthalyova, O. (2006). Critical moisture contents for water and air transport in case of imbibition and drying tests. Proceedings of the 3rd International Building Physics Conference on Research in Building Physics and Building Engineering (pp. 43–48), Montreal.
  • Mukhopadhyaya, P., Goudreau, P., Kumaran, K., & Normandin, N. (2002). Effect of surface temperature on water absorption coefficient of building materials, institute for research in construction (Report NRCC-45369). Ottawa: National Research Council.
  • Perrin, B. (1985, January). Etude des transferts couplés de chaleur et de masse dans les matériaux poreux consolidés non saturés utilisés en Génie Civil (Thèse d’Etat). Université Paul Sabatier, Toulouse.
  • Quenard, D., Salee, H., & Cope, R. (1989). Caractérisation microstructurale et hygrothermique des matériaux de constrution. CIB89: Paris.
  • Sandelberg, I. (1973). Byggnadsdelars Fuktbalans naturligt Klimat (PhD dissertation, Report 43). Lund Institute of Technology, Lund.
  • Shyy, W. (1985). A study of finite difference approximations to steady-state, convection-dominated flow problems. Journal of Computational Physics, 57, 415–438.10.1016/0021-9991(85)90188-3
  • Spalding, D. B. (1972). A novel finite-difference formulation for differential expressions involving both first and second derivatives. International Journal for Numerical Methods in Engineering, 4, 551–559.10.1002/(ISSN)1097-0207
  • Werner & Gertis. (1976). Energetische Kopplung von Feuchte und Warmeubertragung an Aubenflachen. In Hygrische Transportphänomene in Baustoffen, Deutscher AusschuB für Stahlbeton, Heft 258, Berlin.