7,506
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Performance evaluation of a combined cycle power plant integrated with organic Rankine cycle and absorption refrigeration system

ORCID Icon, & | (Reviewing Editor)
Article: 1451426 | Received 18 Jan 2017, Accepted 08 Mar 2018, Published online: 22 Mar 2018

References

  • Afam VI Combined Cycle Gas Turbine Plant (CCGT) . (2015). Plant operations report . Nigeria: Afam.
  • Ahmadi, P. , & Dincer, I. (2011). Thermodynamic analysis and thermoeconomic optimization of a dual pressure combined cycle power plant with a supplementary firing unit. Energy Conversion and Management , 52 (5), 2296–2308. doi:10.1016/j.enconman.2010.12.023
  • Ahmadi, P. , Dincer, I. , & Rosen, M. A. (2012). Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Conversion and Management , 64 , 447–453. doi:10.1016/j.enconman.2012.06.001
  • Ahmadi, P. , Dincer, I. , & Rosen, M. A. (2013). Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system. Energy Conversion and Management Journal , 76 , 282–300. doi:10.1016/j.enconman.2013.07.049
  • Ahmadi, P. , Rosen, M. A. , & Dincer, I. (2012). Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm. Energy , 46 , 21–31. doi:10.1016/j.energy.2012.02.005
  • Alhazmy, M. M. , & Najjar, Y. S. H. (2004). Augmentation of gas turbine performance using air coolers. Applied Thermal Engineering , 24 , 415–429. doi:10.1016/j.applthermaleng.2003.09.006
  • Ameri, M. , & Hejazi, S. H. (2004). The study of capacity enhancement of the Chabahar gas turbine installation using an absorption chiller. Applied Thermal Engineering , 24 , 59–68. doi:10.1016/S1359-4311(03)00239-4
  • Boonnasa, S. , Namprakai, P. , & Muangnapoh, T. (2006). Performance improvement of the combined cycle power plant by intake air cooling using an absorption chiller. Energy , 31 (12), 1700–1710. doi:10.1016/j.energy.2005.09.010
  • Cengel, Y. A. , & Boles, M. A. (2011). Thermodynamics: An engineering approach (7th ed.). New York, NY : McGraw-Hill Publishing Company.
  • Chacartegui, R. , Sánchez, D. , Muñoz, J. M. , & Sánchez, T. (2009). Alternative ORC bottoming cycles FOR combined cycle power plants. Applied Energy , 86 (10), 2162–2170. doi:10.1016/j.apenergy.2009.02.016
  • Chen, H. , Yogi Goswami, D. , & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews , 14 (9), 3059–3067. doi:10.1016/j.rser.2010.07.006
  • Chuang, C.-C. , & Sue, D.-C. (2005). Performance effects of combined cycle power plant with variable condenser pressure and loading. Energy , 30 , 1793–1801. doi:10.1016/j.energy.2004.10.003
  • Dai, Y. , Wang, J. , & Gao, L. (2009). Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management , 50 (3), 576–582. doi:10.1016/j.enconman.2008.10.018
  • Dawoud, B. , Zurigat, Y. H. , & Bortmany, J. (2005). Thermodynamic assessment of power requirements and impact of different gas- turbine inlet air cooling techniques at two different locations in oman of different gas-turbine inlet air cooling techniques at two. Applied Thermal Engineering , 25 , 1579–1598. doi:10.1016/j.applthermaleng.2004.11.007
  • Dincer, I. , & Ratlamwala, T. A. H. (2016). Integrated absorption refrigeration systems . Switzerland: Springer. doi:10.1007/978-3-319-33658-9
  • Dincer, I. , Rosen, M. , & Ahmadi, P. (2018). Optimization of energy systems . UK : Wiley.
  • Ehyaei, M. A. , Hakimzadeh, S. , Enadi, N. , & Ahmadi, P. (2012). Exergy, economic and environment (3E) analysis of absorption chiller inlet air cooler used in gas turbine power plants. International Journal of Energy Research , 36 , 486–498. doi:10.1002/er.1814
  • Ersayin, E. , & Ozgener, L. (2015). Performance analysis of combined cycle power plants: A case study. Renewable and Sustainable Energy Reviews , 43 , 832–842. doi:10.1016/j.rser.2014.11.082
  • Gadhamshetty, V. , Nirmalakhandan, N. , Myint, M. , & Ricketts, C. (2006). Improving air-cooled condenser performance in combined cycle power plants. Journal of Energy Engineering , 132 (2), 81–88. doi:10.1061/(ASCE)0733-9402(2006)132
  • Ghaebi, H. , Amidpour, M. , Karimkashi, S. , & Rezayan, O. (2011). Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover. International Journal of Energy Research , 35 , 697–709. doi:10.1002/er.1721
  • Guo, C. , Du, X. , Yang, L. , & Yang, Y. (2015). Organic Rankine cycle for power recovery of exhaust flue gas. Applied Thermal Engineering , 75 , 135–144. doi:10.1016/j.applthermaleng.2014.09.080
  • He, C. , Liu, C. , Gao, H. , Xie, H. , Li, Y. , Wu, S. , & Xu, J. (2012). The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle. Energy , 38 (1), 136–143. doi:10.1016/j.energy.2011.12.022
  • Hosseini, R. , Beshkani, A. , & Soltani, M. (2007). Performance improvement of gas turbines of fars (Iran) combined cycle power plant by intake air cooling using a media evaporative cooler. Energy Conversion and Management , 48 , 1055–1064. doi:10.1016/j.enconman.2006.10.015
  • Ibrahim, T. K. , & Rahman, M. M. (2012). Effect of compression ratio on performance of combined cycle gas turbine. International Journal of Energy Engineering , 2 (1), 9–14. doi:10.5923/j.ijee.20120201.02
  • Jonsson, M. , & Yan, J. (2005). Humidified gas turbines – a review of proposed and implemented cycles. Energy , 30 , 1013–1078. doi:10.1016/j.energy.2004.08.005
  • Kaushik, S. C. , & Arora, A. (2009). Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. International Journal of Refrigeration , 32 (6), 1247–1258. doi:10.1016/j.ijrefrig.2009.01.017
  • Kaviri, A. G. , Jaafar, M. N. M. , & Lazim, T. M. (2012). Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm. Energy Conversion and Management , 58 , 94–103. doi:10.1016/j.enconman.2012.01.002
  • Khaliq, A. (2009). Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. International Journal of Refrigeration , 32 (3), 534–545. doi:10.1016/j.ijrefrig.2008.06.007
  • Le, V. L. , Kheiri, A. , Feidt, M. , & Pelloux-Prayer, s. (2014). Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid. Energy , 78 , 622–638.10.1016/j.energy.2014.10.051
  • Mago, P J. , Chamra, L. M. , Srinivasan, K. , & Somayaji, C. (2008). An examination of regenerative organic Rankine cycles using dry fluids. Applied Thermal Engineering , 28 (8–9), 998–1007. doi:10.1016/j.applthermaleng.2007.06.025
  • Mansouri, M. T. , Ahmadi, P. , Ganjeh, A. , & Jaafar, M. N. M. (2012). Exergetic and economic evaluation of the effect of HRSG configurations on the performance of combined cycle power plants. Energy Conversion and Management , 58 , 47–58. doi:10.1016/j.enconman.2011.12.020
  • Mohan, G. , Dahal, S. , Kumar, U. , Martin, A. , & Kayal, H. (2014). Development of natural gas fired combined cycle plant for tri-generation of power, cooling and clean water using waste heat recovery: Techno-economic analysis. Energies , 7 , 6358–6381. doi:10.3390/en7106358
  • Mohanty, B. , & Paloso, Jr., G. (1995). Enhancing gas turbine performance by intake air cooling using an absorption chiller. Heat Recovery Systems & CHP 15 (1): 41–50.10.1016/0890-4332(95)90036-5
  • Mohapatra, A. K. (2014). Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance. Energy , 68 , 191–203. doi:10.1016/j.energy.2014.02.066
  • Muhsin, K. , & Kaynakli, O. (2007). Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system. Energy , 32 , 1505–1512. doi:10.1016/j.energy.2006.09.003
  • Nag, P. K. (2013). Power plant engineering (3rd ed.). New Delhi: Tata McGraw Hill Education.
  • Nirmalakhandan, N. , Gadhamshetty, V. , & Mummaneni, A . (2008). Improving combined cycle power plant performance. In 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, HEFAT2008 (pp. 1–6), Pretoria.
  • O’Donovan, A. , & Grimes, R. (2014). A theoretical and experimental investigation into the thermodynamic performance of a 50 MW power plant with a novel modular air-cooled condenser. Applied Thermal Engineering , 71 (1), 119–129. doi:10.1016/j.applthermaleng.2014.06.045
  • Oko, C. O. C. (2012). Engineering thermodynamics: An algorithmic approach (Revised ed.). Port Harcourt: University of Port Harcourt Press.
  • Oko, C. O. C. , & Diemuodeke, E. O. (2010). Analysis of air-conditioning and drying processes using spreadsheet add-in for psychrometric data. Journal of Engineering Science and Technology Review , 3 (1), 7–13.
  • Oko, C. O. C. , & Njoku, I. H. (2017). Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant. Energy , 122 , 431–443. doi:10.1016/j.energy.2017.01.107
  • Oyedepo, S. O. , Fagbenle, R. O. , Adefila, S. S. , & Alam, M. (2015). Thermoeconomic and thermoenvironomic modeling and analysis of selected gas turbine power plants in Nigeria. Energy Science and Engineering , 3 (5), 423–442. doi:10.1002/ese3.79
  • Oyedepo, S. O. , Fagbenle, R. O. , & Adefila, S. S. (2017). Modelling and assessment of effect of operation parameters on gas turbine power plant performance using first and second laws of thermodynamics. American Journal of Engineering and Applied Sciences , 10 (2), 412–430. doi:10.3844/ajeassp.2017.412.430
  • Popli, S. , Rodgers, P. , & Eveloy, V. (2013). Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Applied Thermal Engineering , 50 (1), 918–931. doi:10.1016/j.applthermaleng.2012.06.018
  • Quoilin, S. , Declaye, S. , Tchanche, B. F. , & Lemort, V. (2011). Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Applied Thermal Engineering , 31 (14–15), 2885–2893. doi:10.1016/j.applthermaleng.2011.05.014
  • Quoilin, S. , Dewallef, P. , Lemort, V. , Van Den Broek, M. , & Declaye, S. (2013). Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable and Sustainable Energy Reviews , 22 , 168–86. doi:10.1016/j.rser.2013.01.028
  • Ramani, A. , Rupeshkumar, V. , Amitesh Paul, B. , Anjana, D. , & Saparia, D. (2011). Performance characteristics of an air-cooled condenser under ambient conditions. In International Conference on Current Trends in Technology ‘NUiCONE – 2011 (pp. 382–481). Ahmedabad: Institute of Technology, Nirma University.
  • Safarian, S. , & Fereshteh A. . (2015). “Energy and exergy assessments of modified Organic Rankine Cycles (ORCs).” Energy Reports , 1 , 1–7. doi:10.1016/j.egyr.2014.10.003
  • Saravanamuttoo, H. I. H. , Cohen, H. , & Rogers, G. F. C. (1996). Gas turbine theory (4th ed.). London: Longman.
  • Singh, O. K. (2016). Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system. Applied Energy , 180 , 867–879. doi:10.1016/j.apenergy.2016.08.042
  • Tiwari, A. K. , Hasan, M. M. , & Islam, M. (2013). Exergy analysis of combined cycle power plant: NTPC Dadri, India. International Journal of Thermodynamics , 16 (1), 36–42. doi:10.5541/ijot.443
  • Touaibi, R. , Michel F. , Elena Eugenia V. , & Miloud T. A. . (2013). Parametric study and exergy analysis of solar water- lithium bromide absorption cooling system. International Journal of Exergy , 13 (3): 409–429.
  • Wang, Z. Q. , Zhou, N. J. , Guo, J. , & Wang, X. Y. (2012). Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy , 40 (1), 107–115. doi:10.1016/j.energy.2012.02.022
  • Zaki, G. M , Jassim, R. K. , & Alhazmy, M. M. (2011). Energy, exergy and thermoeconomics analysis of water chiller cooler for gas turbines intake air cooling. Smart Grid and Renewable Energy , 2 , 190–205. doi:10.4236/sgre.2011.23023