4,011
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Strength and microstructure of eco-concrete produced using waste glass as partial and complete replacement for sand

ORCID Icon, ORCID Icon, , , ORCID Icon & | (Reviewing editor) show all
Article: 1483860 | Received 29 Oct 2017, Accepted 30 May 2018, Published online: 09 Jul 2018

References

  • Adaway, M. , & Wang, Y. (2015). Recycled glass as a partial replacement for fine aggregate in structural concrete – Effects on compressive strength. Electronic Journal of Structural Engineering , 14, 116–122. Retrieved from http://www.ejse.org/Archives/Fulltext/2015-1/2015-1-11.pdf
  • Afshinnia, K. , & Rangaraju, P. R. (2015). Influence of fineness of ground recycled glass on mitigation of alkali–Silica reaction in mortars. Construction and Building Material , 81, 257–267. doi:10.1016/j.conbuildmat.2015.02.041
  • Afshinnia, K. , & Rangaraju, P. R. (2016). Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Construction and Building Material , 117, 263–272. doi:10.1016/j.conbuildmat.2016.04.072
  • Akinwumi, I. I. , Awoyera, P. O. , Olofinnade, O. M. , Busari, A. A. , & Okotie, M. (2016). Rice husk as a concrete constituent: Workability, water absorption and strength of the concrete. Asian Journal of Civil Engineering , 17, 887–898.
  • Ali, E. E. , & Al-Tersawy, S. H. (2012). Recycled glass as a partial replacement for fine aggregate in self-compacting concrete. Construction and Building Materials , 35, 785–791. doi:10.1016/j.conbuildmat.2012.04.117
  • ASTM C114 . (2015). Standard chemical analysis of hydraulic cement . West Conshohocken, PA: American Society for Testing and Materials International. doi:10.1520/C0114-15
  • ASTM C136 . (2014). Standard test method for sieve analysis of fine and coarse aggregates . West Conshohocken, PA: American Society for Testing and Materials International. doi:10.1520/C0136_C0136M-14
  • Bamigboye, G. O. , Ede, A. N. , Raheem, A. A. , Olofinnade, O. M. , & Okorie, U. (2016). Economic exploitation of gravel in place of granite in concrete production. Material Science Forum , 866, 73–77. doi:10.4028/www.scientific.net/MSF.866.73
  • British Standards Institute . (2009). BS EN 12390-3: 2009. Testing hardened concrete; Part 3: Compressive strength of test specimens (pp. 1–19). London: Author.
  • British Standards Institute. BS 1881-125 . (2009). Testing concrete: Methods for mixing and sampling fresh concrete in the laboratory (pp. 1–8). London: Author.
  • British Standards Institute. BS EN 12350-2 . (2009). Testing of Fresh concrete; Part 2: Slump test (pp. 1–12). London: Author.
  • Calkins, M. (2009). Materials for sustainable sites: A complete guide to the evaluation, selection, and use of sustainable construction materials . Hoboken: Wiley. Retrieved from http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470134550.html#see-less-rev
  • Carsana, M. , Frassoni, M. , & Bertolini, L. (2014). Comparison of ground waste glass with other supplementary cementitious materials. Cement and Concrete Composites , 45, 39–45. doi:10.1016/j.cemconcomp.2013.09.005
  • Chen, C. H. , Wu, J. K. , & Yang, C. C. (2006). Waste E-glass particles used in cementitious mixtures. Cement and Concrete Research , 36, 449–456. doi:10.1016/j.cemconres.2005.12.010
  • Chesner, W. H. , Coollins, R. J. , & Mackay, M. H. (1997). User guidelines for waste and byproduct materials in pavement construction. US Administration . Publication No. FHWA-RD, 97–148. doi:10.1016/j.cemconcomp.2012.08.028
  • Ede, A. N. , Olofinnade, O. M. , Ugwu, E. I. , & Salau, A. O. (2018). Potential of momordica angustisepala fiber in enhancing strengths of normal Portland cement concrete. Cogent Engineering , 5, 1431353. doi:10.1080/23311916.2018.1431353
  • Federico, L. M. , & Chidiac, S. E. (2009). Waste glass as a supplementary cementitious material in concrete – Critical review of treatment methods. Cement and Concrete Composites , 31, 606–610. doi:10.1016/j.cemconcomp.2009.02.001
  • Idir, R. , Cyr, M. , & Tagnit-Hamou, A. (2011). Pozzolanic properties of fine and coarse color-mixed glass cullet. Cement and Concrete Composites , 33, 19–29. doi:10.1016/j.cemconcomp.2010.09.013
  • Ismail, Z. Z. , & Al-Hashmi, E. A. (2009). Recycling of waste glass as a partial replacement for fine aggregate in concrete. Waste Management , 29, 655–659. doi:10.1016/j.wasman.2008.08.012
  • Jani, Y. , & Hogland, W. (2014). Waste glass in the production of cement and concrete – A review. Journal Environmental Chemical Engineering , 2, 1767–1775. doi:10.1016/j.jece.2014.03.016
  • Kara, P. , Csetényi, L. J. , & Borosnyói, A. (2016). Performance characteristics of waste glass powder substituting Portland cement in mortar mixtures . IOP Conference Series: Materials Science and Engineering. doi:10.1088/1757-899X/123/1/012057
  • Khmiri, A. , Samet, B. , & Chaabouni, M. (2012). Assessment of the waste glass powder pozzolanic activity by different methods. International Journal of Research and Revies in Applied Sciences , 10, 322–328. Retrieved from www.arpapress.com/volumes/vol10issue2/IJRRAS_10_2_18.pdf
  • Kline, J. , & Barcelo, L. (2012, May 14–17). Cement and CO2, a victim of success! Cement Industry Technical Conference, IEEE-IAS/PCA, 53: 1–14, San Antonio, TX.
  • Ling, T. C. , Poon, C. S. , & Wong, H. W. (2013). Management and recycling of waste glass in concrete products: Current situations in Hong Kong. Resource, Conservation and Recycling , 70, 25–31. doi:10.1016/j.resconrec.2012.10.006
  • Matos, A. M. , & Sousa-Coutinho, J. (2012). Durability of mortar using waste glass powder as cement replacement. Construction and Building Material , 36, 205–215. doi:10.1016/j.conbuildmat.2012.04.027
  • Mehta, K. P. , & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties, and materials (3rd ed.). New York: McGraw-Hill.
  • Metwally, I. M. (2007). Investigations on the performance of concrete made with blended finely milled waste glass. Advances in Structural Engineering , 10, 47–53. doi:10.1260/136943307780150823
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete. Composites , 31, 601–605. doi:10.1016/j.cemconcomp.2008.12.010
  • Meyer, C. , Egosi, N. , & Andela, C. (2001, March 19–20). Concrete with waste glass as aggregate; in Recycling and reuse of glass cullet. In Proceedings of the international symposium on Recycling and Reuse of Glass Cullet Organised by the Concrete Technology Unit, University of Dundee and Held at the University of Dundee, UK (pp. 179–187).
  • Mindess, S. , Young, F. J. , & Darwin, D. (2003). Concrete (2nd ed.). New Jersey: Prentice Hall.
  • Ollivier, J. P. , Maso, J. C. , & Bourdette, B. (1995). Interfacial transition zone in concrete. Journal of Advance Cement Based Material , 2, 30–38. doi:10.1016/1065-7355(95)90037-3
  • Olofinnade, O. M. , Ede, A. N. , & Ndambuki, J. M. (2017a). Sustainable green environment through utilization of waste soda-lime glass for production of concrete. Journal of Material and Environmental Sciences , 8, 1139–1152. www.jmaterenvironsci.com/Document/vol8/vol8…/121-JMES-2709-Olofinnade.pdf
  • Olofinnade, O. M. , Ede, A. N. , & Ndambuki, J. M. (2017b). Experimental investigation on the effect of elevated temperature on compressive strength of concrete containing waste glass powder. International Journal of Engineering and Technology Innovation , 7(4), 280–291.
  • Olofinnade, O. M. , Ede, A. N. , Ndambuki, J. M. , & Bamigboye, G. O. (2016a). Structural properties of concrete containing ground waste clay brick powder as partial substitute for cement. Material Science Forum , 866, 63–67. doi:10.4028/www.scientific.net/MSF.866.63
  • Olofinnade, O. M. , Ndambuki, J. M. , Ede, A. N. , & Booth, C. (2017c). Application of waste glass powder as a partial cement substitute towards more sustainable concrete production. International Journal of Engineering Research in Africa , 31, 77–93. doi:10.4028/www.scientific.net/JERA.31.77
  • Olofinnade, O. M. , Ndambuki, J. M. , Ede, A. N. , & Olukanni, D. O. (2016b). Effect of substitution of crushed waste glass as partial replacement for natural fine and coarse aggregate in concrete. Material Science Forum , 866, 58–62. doi:10.4028/www.scientific.net/MSF.866.58
  • Park, S. B. , Lee, B. C. , & Kim, J. H. (2004). Studies on mechanical properties of concrete containing waste glass aggregate. Cement and Concrete Research , 34, 2181–2189. doi:10.1016/j.cemconres.2004.02.006
  • Polley, C. , Cramer., S. M. , & De La Cruz, R. V. (1998). Potential for using waste glass in Portland cement concrete. Journal of Materials in Civil Engineering , 10, 210–219. doi:10.1061/(ASCE)0899-1561(1998)10:4(210)
  • Rashad, A. M. (2014). Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Construction and Building Materials , 72, 340–357. doi:10.1016/j.conbuildmat.2014.08.092
  • Schwarz, N. , & Neithalath, N. (2008). Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration. Cement and Concrete Research , 38, 429–436. doi:10.1016/j.cemconres.2007.12.001
  • Shao, Y. , Lefort, T. , Moras, S. , & Rodriguez, D. (2000). Studies on concrete containing ground waste glass. Cement and Concrete Research , 30, 91–100. doi:10.1016/S0008-8846(99)00213-6
  • Shayan, A. , & Xu, A. (2006). Performance of glass powder as a pozzolanic material in concrete, a field trial on concrete slabs. Cement and Concrete Research , 36, 457–468. doi:10.1016/j.cemconres.2005.12.012
  • Shi, C. , & Zheng, K. (2007). A review on the use of waste glasses in the production of cement and concrete. Resources, Conservation and Recycling , 52, 234–247. doi:10.1016/j.resconrec.2007.01.013
  • Siddique, R. (2008). Waste glass . Chap. 4 in Waste materials and by-products in concrete. Springer. doi:10.1007/978-3-540-74294-4
  • Sobolev, K. , Turker, P. , Soboleva, S. , & Iscioglu, G. (2006). Utilization of waste glass in ECO cement, strength properties and microstructural observations. Waste Management , 27, 971–976. doi:10.1016/j.wasman.2006.07.014
  • Sonebi, M. (2015, June 9–11). Embedded sustainability driven approach into construction. In Proceedings of the first symposium knowledge exchange for young scientists (KEYS) (pp. 25–30). ISBN 978-3-9817146-3-7.
  • Tan, K. H. , & Du, H. (2013). Use of waste glass as sand in mortar. Part I. Fresh, mechanical and durability properties.”. Cement and Concrete. Composites , 35, 109–117. doi:10.1016/j.cemconcomp.2012.08.028
  • Topcu, I. B. , Boga., A. R. , & Bilir, T. (2008). Alkali-silica reactions of mortars produced by using waste glass as fire aggregate and admixtures such as fly ash and Li2CO3 . Waste Management , 28, 878–884. doi:10.1016/j.wasman.2007.04.005
  • Topcu, I. B. , & Canbaz, M. (2004). Properties of concrete containing waste glass. Cement and Concrete Research , 34, 267–274. doi:10.1016/j.cemconres.2003.07.003
  • United States Environmental Protection Agency . (2014). Advancing sustainable materials management: Facts and figures report. Retrieved from https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures
  • Zhao, H. , Poon, C. S. , & Ling, T. C. (2013). Utilizing recycled cathode ray tube funnel glass sand as river sand replacement in the high-density concrete. Journal of Cleaner Production , 51, 184–190. doi:10.1016/j.jclepro.2013.01.025