2,280
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of a concrete–graphite hybrid mixture for low-cost thermal energy storage material

& | (Reviewing editor)
Article: 1538490 | Received 09 May 2018, Accepted 16 Oct 2018, Published online: 04 Nov 2018

References

  • Adeala, A. A. , Huan, Z. , & Enweremadu, C. C. (2015). Evaluation of global solar radiation using multiple weather parameters as predictors for South Africa provinces. Thermal Science , 19, S495–S509. doi:10.2298/TSCI130714072A
  • Adeyanju, A. A. , & Manohar, K. (2015). Optimization of packed concrete bed energy storage system. Global Journal of Researches in Engineering: A Mechanical and Mechanics Engineering , 15, 29–38.
  • Anderson, R. , Bates, L. , Johnson, E. , & Morris, J. F. (2015). Packed bed thermal energy storage: A simplified experimentally validated model. Journal of Energy Storage , 4, 14–23. doi:10.1016/j.est.2015.08.007
  • ASHRAE . (1978). ASHRAE Standard 93-77. Methods of Testing to Determine the Thermal Performance of Solar Collectors , 93, 77.
  • Ataer, O. E. (2006). Storage of thermal energy. In Y. A. Gogus (Ed.), Energy storage systems, encyclopedia of life support systems, (vol. 1, p. 97). Oxford, U.K: EOLSS Publishers.
  • Boonsu, R. , Sukchai, S. , Hemavibool, S. , & Somkun, S. (2016). Performance analysis of thermal energy storage prototype in Thailand. Journal of Clean Energy Technology , 4, 101–106. doi:10.7763/JOCET.2016.V4.261
  • Cascetta, M. , Cau, G. , Puddu, P. , & Serra, F. (2015). Experimental investigation of a packed bed thermal energy storage system. Journal of Physics: Conference Series , 655(012018), 1–9. doi:10.1088/1742-6596/655/1/012018
  • Cascetta, M. , Serra, F. , Arena, S. , Cast, E. , Cau, G. , & Puddu, P. (2016). Experimental and numerical research activity on a packed bed TES system. Energies , 9, 1–13. doi:10.3390/en9090758
  • CES Selector software . (2012). Cambridge, U.K: Granta Design Limited. Retrived from https://www.grantadesign.com/products/ces
  • Chiteka, K. , & Enweremadu, C. C. (2016). Prediction of global horizontal solar irradiance in Zimbabwe using artificial neural networks. Journal of Cleaner Production , 135, 701–711. doi:10.1016/j.jclepro.2016.06.128
  • Dincer, I. (2002). On thermal energy storage systems and applications in buildings. Energy and Buildings , 34, 377–388. doi:10.1016/S0378-7788(01)00126-8
  • Dincer, I. , & Rosen, M. A. (2011). Thermal energy storage: Systems and applications (2nd ed., pp. 621)). West Sussex, U.K.: John Wiley & Sons.
  • Fernandez, A. I. , Martinez, M. , Segarra, M. , Martorell, I. , & Cabeza, L. F. (2010). Selection of materials with potential in sensible thermal energy storage. Solar Energy Materials & Solar Cells , 94, 1723–1729. doi:10.1016/j.solmat.2010.05.035
  • Gasia, J. , Miro, L. , & Cabeza, L. F. (2016). Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques. Renewable and Sustainable Energy Reviews , 60, 1584–1601. doi:10.1016/j.rser.2016.03.019
  • Gil, A. , Medrano, M. , Martorell, I. , Lázaro, A. , Dolado, P. , Zalba, B. , & Cabeza, L. F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews , 14, 31–55. doi:10.1016/j.rser.2009.07.035
  • Guo, C. , Zhu, J. , Zhou, W. , & Chen, W. (2010). Fabrication and thermal properties of a new heat storage concrete material. Journal of Wuhan University of Technology - Materials Science Edition , 25, 628–630. doi:10.1007/s11595-010-0058-3
  • Hahne, E. (2009). Storage of sensible heat. In Y. A. Gogus (Ed.), Energy storage systems, encyclopedia of life support systems, (vol. 1, p. 117). Oxford, U.K: EOLSS Publishers.
  • Hasnain, S. M. (1998). Review on sustainable thermal storage technologies. Part II: Cool thermal storage. Energy Conversion and Management , 39, 1139–1153. doi:10.1016/S0196-8904(98)00025-9
  • Huang, Z. , Gao, X. , Xu, T. , Fang, Y. , & Zhang, Z. (2014). Thermal property measurement and heat storage analysis of LiNO3/KCl – Expanded graphite composite phase change material. Applied Energy , 115, 265–271. doi:10.1016/j.apenergy.2013.11.019
  • John, E. , Hale, M. , & Selvam, P. (2013). Concrete as a thermal energy storage medium for thermocline energy storage systems. Solar Energy , 96, 194–204. doi:10.1016/j.solener.2013.06.033
  • Khare, S. , Dell’Amico, M. , Knight, C. , & McGarry, S. (2013). Selection of materials for high temperature sensible energy storage. Solar Energy Materials and Solar Cells , 115, 114–122. doi:10.1016/j.solmat.2013.03.009
  • Kim, T. , France, D. M. , Yu, W. , Zhao, W. , & Singh, D. (2014). Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power. Sol Energy , 103, 438–447. doi:10.1016/j.solener.2014.02.038
  • Laing, D. , Carsten, B. , Thomas, B. , Michael, F. , Nils, B. , & Matthias, H. (2012). High-temperature solid-media thermal energy storage for solar thermal power plants. Proceedings of the IEEE , 100, 516–524. doi:10.1109/JPROC.2011.2154290
  • Laing, D. , Lehmann, D. , Fiß, M. , & Bahl, C. (2009). Test results of concrete thermal energy storage for parabolic trough power plants. Journal of Solar Energy Engineering , 131, 041007. doi:10.1115/1.3917844
  • Li, Y. , Lukso, Z. , & Weijinen, M. (2015). The implication of CO2 price for China’s power sector decarbonization. Applied Energy , 15, 53–64. doi:10.1016/j.apenergy.2015.01.105
  • Liu, M. , Tay, N. H. S. , Bell, S. , Belusko, M. , Jacob, R. , Will, G. , … Bruno, F. (2016). Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renewable and Sustainable Energy Reviews , 53, 1411–1432. doi:10.1016/j.rser.2015.09.026
  • Liu, M. Y. J. , Alengaram, U. J. , Jumaat, M. Z. , & Mo, K. H. (2014). Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings , 72, 238–245. doi:10.1016/j.enbuild.2013.12.029
  • Mehling, H. , & Cabeza, L. F. (2008). Heat and cold storage with PCM: An up to date introduction to basics and applications (pp. 308). Berlin Heidelberg, Germany: Springer.
  • Miro, L. , Navarro, M. E. , Suresh, P. , Gil, A. , Fernandez, A. I. , & Cabeza, L. F. (2014). Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES). Applied Energy , 113, 1261–1268. doi:10.1016/j.apenergy.2013.08.082
  • Navarro, M. E. , Martinez, M. , Gil, A. , Fernandez, A. I. , Cabeza, L. F. , Olives, R. , & Py, X. (2012). Selection and characterization of recycled materials for sensible thermal energy storage. Solar Energy Materials & Solar Cells , 107, 131–135. doi:10.1016/j.solmat.2012.07.032
  • Prasad, L. , & Muthukumar, P. (2013). Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application. Solar Energy , 97, 217–229. doi:10.1016/j.solener.2013.08.022
  • Real, S. , Bogas, J. A. , Da Gloria Gomes, M. , & Ferrer, B. (2016). Thermal conductivity of structural lightweight aggregate concrete. Magazine of Concrete Research , 68, 798–808. doi:10.1680/jmacr.15.00424
  • Sachin, N. A. , Ashok, J. K. , & Abhijit, K. (2016). Thermal energy storage: A review. IOSR Journal of Mechanical and Civil Engineering , 13, 72–77. doi:10.9790/1684-1303027277
  • Salomoni, V. A. , Majorana, C. E. , Giannuzzi, G. M. , Miliozzi, A. , Di Maggio, R. , Girardi, F. , … Lucentini, M. (2014). Thermal storage of sensible heat using concrete modules in solar power plants. Solar Energy , 103, 303–315. doi:10.1016/j.solener.2014.02.022
  • Singh, R. , Saini, R. P. , & Saini, J. S. (2009). Models for predicting thermal performance of packed bed energy storage system for solar air heaters – A review. The Open Fuels & Energy Science Journal , 2, 47–53.
  • Skinner, J. E. , Strasser, M. N. , Brown, B. M. , & Selvam, R. P. (2013). Testing of high-performance concrete as a thermal energy storage medium at high temperatures. Journal of Solar Energy Engineering , 136, 021004. doi:10.1115/1.4024925
  • Strasser, M. N. , & Selvam, R. P. (2014). A cost and performance comparison of packed bed and structured thermocline thermal energy storage systems. Solar Energy , 108, 390–402. doi:10.1016/j.solener.2014.07.023
  • Sukhatme, S. P. (1987). Solar energy: Principles of thermal collection and storage . New Delhi, India: Tata McGraw-Hill.
  • Sun, W. , Zhao, Z. , & Wang, Y. (2017). Thermal analysis of a thermal energy storage unit to enhance a workshop heating system driven by industrial residual water. Energies , 10, 1–19. doi:10.3390/en10020219
  • Tiwari, P. , Kumar, A. , & Sarviya, R. M. (2013). Thermal performance of packed bed solar air heater. Proceedings of the IEEE , 978, 438–442. doi:10.1109/ICEETS.2013.6533423
  • Wu, C. , Pan, J. , Zhong, W. , & Jin, F. (2016). Testing of high thermal cycling stability of low strength concrete as a thermal energy storage material. Applied Science , 6, 1–12. doi:10.3390/app6100271
  • Xiao, X. , Zhang, P. , & Li, M. , 3227–3233. http://dx.doi.org/10.1016/j.solener.2012.08.011. (2013). Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage. Energy Conversion and Management , 73, 86–94. doi:10.1016/j.enconman.2013.04.007
  • Zhao, W. , France, D. M. , Yu, W. , Kim, T. , & Singh, D. (2014). Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants. Renewable Energy , 69, 134–146. doi:10.1016/j.renene.2014.03.031