1,558
Views
2
CrossRef citations to date
0
Altmetric
Research Article

volumechange and strength characteristics of normal and high-strength mortars: effect of aggregate type and water-binder ratio

& | (Reviewing editor)
Article: 1542928 | Received 21 Mar 2018, Accepted 30 Sep 2018, Published online: 19 Nov 2018

References

  • Alexander, M. , & Mindess, S. (2010). Aggregates in concrete. In Modern concrete technology series (pp. 435).Taylor and Frances Group, London and New York.
  • Andal, J. , Shehata, M. , & Zacarias, P. (2016). Properties of concrete containing recycled concrete aggregate of preserved quality. Construction and Building Materials , 125, 842–855. doi:10.1016/j.conbuildmat.2016.08.110
  • ASTM C 1240 . (2015). Standard specification for silica fume used in cementitious mixtures . West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C 157/C157M . (2017). Standard specification for length change of hardened hydraulic-cement mortar and concrete . West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C109/C109M . (2016 a). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens) . West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C1437 . (2014). Standard test method for flow of hydraulic cement mortar . West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C230/C230M . (2015). Standard specification for flow table for use in tests of hydraulic cementX . West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C305 . (2012). Standard practice for mechanical mixing of hydraulic cement paste and mortars of plastic consistency . West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C494/C494M . (2017). Standard specification for chemical admixtures for concrete . West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C78/C78M . (2016). Standard test method for flexural strength of concrete (using simple beam with third-point loading) . West Conshohocken, PA: American Society for Testing and Materials.
  • Aydin, S. , Yazici, H. , Yardimci, M. Y. , & Yiğiter, H. (2010). Effect of aggregate type on mechanical properties of reactive powder concrete. ACI Materials Journal , 107(5), 441–449.
  • Bentz, D. P. , & Jensen, O. M. (2004). Mitigation strategies for autogenous shrinkage cracking. Cement and Concrete Composite , 26, 677–685. doi:10.1016/S0958-9465(03)00045-3
  • Bui, N. , Satomi, T. , & Takahashi, H. (2017). Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate. Construction and Building Material , 148, 376–385. doi:10.1016/j.conbuildmat.2017.05.084
  • Gesoglu, M. , Guneyisi, E. , Ozturan, T. , Oz, H. O. , & Asaad, D. S. (2014). Self-consolidating characteristics of concrete composites including rounded fine and coarse fly ash lightweight aggregates. Composite Part B , 60, 757–763.
  • Gesoglu, M. , Guneyisi, E. , Ozturan, T. , Oz, H. O. , & Asaad, D. S. (2015). Shear thickening intensity of self-compacting concretes containing rounded lightweight aggregates. Construction and Building Materials , 79, 40–47. doi:10.1016/j.conbuildmat.2015.01.012
  • Ho, N. Y. , Yang, P. K. L. , Lim, W. F. , Zayed, T. , Chew, K. C. , Low, G. L. , & Ting, S. K. (2013). Efficient utilization of recycled concrete aggregate in structural concrete. Journal of Materials in Civil Engineering , 25, 318–327. doi:10.1061/(ASCE)MT.1943-5533.0000587
  • Iraqi Organization of Standards. (1984) . IQS 5/1984, for Portland Cement.
  • Iraqi Organization of Standards (1984) . IQS 45/1984; for Aggregate.
  • Kayali, O. , Haque, M. N. , & Zhu, B. (1999). Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cement and Concrete Research , 29, 1835–1840.
  • Khatib, J. M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement and Concrete Research , 35, 763–769. doi:10.1016/j.cemconres.2004.06.017
  • Kohno, K. , Okamoto, T. , Isikawa, Y. , Sibata, T. , & Mori, H. (1999). Effects of artificial lightweight aggregate on autogenous shrinkage of concrete. Cement and Concrete Research , 29, 611–614. doi:10.1016/S0008-8846(98)00202-6
  • Miyazawa, S. , & Monteiro, P. J. M. (1996). volumechange of high-strengthconcrete in moist conditions. Cement and Concrete Research , 26(4), 567–572. doi:10.1016/0008-8846(96)00033-6
  • Neville, A. M. (1995). Properties of Concrete . New York: Longman.
  • Ozturan, T. , & Cecen, C. (1997, January). Effect of coarse aggregate type on mechanical properties of concretes with different strengths. Cement and Concrete Research , 27(2), 165–170.
  • Shannag, M. J. (2000 June). High strength concrete containing natural Pozzolan and SF. Cement and Concrete Composite , 23, 399–406. doi:10.1016/S0958-9465(00)00037-8
  • Silva, R. V. , Brito, J. , & Dhir, R. K. (2015). Prediction of the shrinkage behavior of recycled aggregate concrete: A review. Construction and Building Materials , 77, 327–339. doi:10.1016/j.conbuildmat.2014.12.102
  • Tokyay, M. (1998). Effect of aggregate type on mechanical properties of high strength concrete. Teknik Dergi , 9(2), 1627–1638.
  • Topçu, I.B. , & Günçan, N. F. (1995). Using waste concrete as aggregate. Cement and Concrete Research , 25, 1385–1390. doi:10.1016/0008-8846(95)00131-U
  • Wu, K. , Chen, B. , Yao, W. , & Zhang, D. (2000). Effect of coarse aggregate type on mechanical properties of high-performance concrete. Cement and Composite Research , 31, 1421–1425. doi:10.1016/S0008-8846(01)00588-9
  • Xiao, J. Z. , Li, J. B. , & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research , 35, 1187–1194. doi:10.1016/j.cemconres.2004.09.020
  • Yang, Y. , Sato, R. , & Kawai, K. (2005). Autogenous shrinkage of high-strength concrete containing SF under drying at early ages. Cement and Concrete Research , 35, 449–456. doi:10.1016/j.cemconres.2004.06.006
  • Zhang,W. , Zakaria, M. , & Hama, Y. (2013). Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete. Construction and Building Materials , 49, 500–510. doi:10.1016/j.conbuildmat.2013.08.069
  • Zhou, C. , & Chen, Z. (2017). Mechanical properties of recycled concrete made with different types of aggregate. Construction and Building Materials, 134, 497–506.