639
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation and development of a numerical tool for the prediction and influence of natural fibre poroelastic trim behaviour on automotive cabin noise

ORCID Icon, ORCID Icon & |
Article: 1548992 | Received 04 Sep 2018, Accepted 13 Nov 2018, Published online: 26 Nov 2018

References

  • Agilent Technologies . (1994). The fundamentals of signal analysis: Hewlett-Packard .
  • Agilent Technologies . (2000). The fundamentals of modal testing: Application note (pp. 243–553). Author.
  • Asdrubali, F. (2006). Survey on the acoustical properties of new sustainable materials for noise control. Acta Acustica united with Acustica. 92. S89. .
  • Azevedoa, L. J. , & Nabuco, M. (2005). Sound absorption of sisal fiber panels. The 2005 Congress and Exposition on Noise Control Engineering . Rio de Janeiro, Brazil: Institute of Noise Control Engineering (INCE).
  • Brechlin, E. , Bosmans, I. , Keymeulen, N. , & Dekkers, R. (2002). Experimental investigations of the vibro-acoustic behaviour of trim components in a car cabin. Proceedings of ISMA2002, vehicle noise and vibration (pp. 1981–1988). Belgium.
  • Brüel, & Kjær . (1984). Measuring sound (pp. 45). Brüel, & Kjær: Denmark.
  • Cameron, C. J. , Wennhage, P. , & Göransson, P. (2010). Prediction of NVH behaviour of trimmed body components in the frequency range 100–500 Hz. Applied Acoustics , 71(8), 708–721. doi:10.1016/j.apacoust.2010.03.002
  • Campbell, B. , Abrishaman, M. , & Stokes, W. (1993). Structural-acoustic analysis for the prediction of vehicle body acoustic sensitivities . SAE Technical Paper 931327. doi:10.4271/931327
  • Chen, S. M. , Wang, D. F. , & Zan, J. M. (2011). Interior noise prediction of the automobile based on hybrid FE-SEA method. Mathematical Problems in Engineering , 2011, 20.
  • Dassault . (2012). Abaqus 6.12 analysis user’s manual: Dassault systemes simulia corp .
  • Desai, D. (2010). Prediction and reduction of lowfrequency vibro-acoustic transmission through automotive door mounts . Pretoria: Tshwane University Of Technology.
  • Donders, S. (2008). Computer-aided engineering methodologies for robust automotive NVH design . Leuven: Katholieke Universiteit.
  • Dunne, R. , Desai, D. , & Sadiku, R. (2017a). A review of the factors that influence sound absorption and the available empirical models for fibrous materials. Acoustics Australia , 45, 453–469. doi:10.1007/s40857-017-0097-4
  • Dunne, R. , Desai, D. , Sadiku, R. , & Jayaramudu, J. (2016). A review of natural fibres, their sustainability and automotive applications. Journal of Reinforced Plastics and Composites , 35(13), 1041–1050. doi:10.1177/0731684416633898
  • Dunne, R. K. , Desai, D. , & Sadiku, R. (2017b). Material characterization of blended sisal-kenaf composites with an ABS matrix. Applied Acoustics , 125(SupplementC), 184–193. doi:10.1016/j.apacoust.2017.03.022
  • Dunne, R. K. , Desai, D. A. , & Sadiku, R. (2017c). A review of porous automotive sound absorbers, their environmental impact and the factors that influence sound absorption. International Journal of Vehicle Noise and Vibration , 13(2), 137–163. doi:10.1504/IJVNV.2017.087910
  • DYTRAN . n.d. Accelerometer mounting considerations . Author.
  • Everest, F. A. , & Pohlmann, K. C. (2009). Master handbook of acoustics . McGraw-Hill Education.
  • Fung, W. (2001). Textiles in automotive engineering . Boca Raton: CRC Press. .
  • Ghassemieh, E. (2011). New trends and developments in automotive industry . UK: InTech.
  • Chakraborty, S. (2011). Mechanics over micro and nano scales. New York, NY: Springer.
  • Goelzer, B. , Hansen, C. H. , & Sehrndt, G. A. (2001). Occupational exposure to noise: Evaluation, prevention and control. Germany: World Health Organization. Retrieved from http://www.who.int/iris/handle/10665/42429Relation
  • Koopmann, H. F. (1980). A joint acceptance function for enclosed spaces. Journal of Sound and Vibration , 73(3), 429. doi:10.1016/0022-460X(80)90525-8
  • Lalor, N. , & Priebsch, H. (2007). The prediction of low- and mid-frequency internal road vehicle noise: A literature survey. Part D. Journal of Automobile Engineering , 221(3), 245–269. doi:10.1243/09544070JAUTO199
  • Mathur, G. P. , Chin, C. L. , Simpson, M. A. , & Lee, J. T. (2001). Structural acoustic prediction and interior noise control technology ( pp. 01–48). DIANE Publishing.
  • Nel, C. B. (1997). Optimisation of engine mount systems for front-wheel-drive vehicles . Pretoria: Technikon Pretoria.
  • Parikh, D. V. , Calamari, T. A. , & Myatt, J. C. (2000). Performance of nonwoven cellulosic composites for automotive interiors. International Nonwovens Journal , 9(2), 83–85.
  • Pickering, K. (2008). Properties and performance of natural-fibre composites . Elsevier Science.
  • Raichel, D. R. (2006). The science and applications of acoustics (2nd ed.). Fort Collins: Springer.
  • Rao, S. S. (2011). Mechanical vibrations (5th ed.). Singapore: Pearson.
  • Saad, M. J. , & Kamal, I. (2012). Kenaf core particleboard and its sound absorbing properties. Journal of Science and Technology , 4(5), 23–34.
  • Sen, T. , & Reddy, H. N. J. (2011). Various industrial applications of Hemp, Kinaf, Flax and Ramie natural fibres. International Journal of Innovation, Management and Technology , 2(3), 192–198.
  • Tebby, S. , Esmailzadeh, E. , & Barari, A. (2011). Methods to determine torsion stiffness in an automotive chassis. Computer-Aided Design & Applications, PACE , 8(1), 67–75. doi:10.3722/cadaps
  • Tinti, F. , Scaffidi, C. , & Perazzolo, A. (1997). Improvement of interior acoustics of a top-class car in the low frequency range using a hybrid numerical-experimental technique. Transactions on the Built Environment , 25, 191–201.
  • Wang, X. (2010). Vehicle noise and vibration refinement.
  • Zheng, L. , Fang, Z. , Tang, Z. , Zhan, Z. , & Fu, J. (2015). The design optimization of vehicle interior noise through structural modification and constrained layer damping treatment . SAE Technical Papers. doi:10.4271/2015-01-0663.