10,005
Views
20
CrossRef citations to date
0
Altmetric
Review Article

A review of weldability of carbon steel in arc-based welding processes

ORCID Icon, , & | (Reviewing editor:)
Article: 1609180 | Received 28 Dec 2018, Accepted 14 Apr 2019, Published online: 07 May 2019

References

  • Adedayo, S., Odebiyi, O. S., & Oseni, G. L. (2013). Effect of parallel heating on properties of a welded AISI 8438 steel. Annals of Faculty Engineering Hunedoara-International Journal of Engineering, 321–324. TomeXI, Fascicule3. ISSN 1584-2673.
  • Adedayo, S. M., & Momoh, S. O. (2010). Effect of initial elevated metal temperature on mechanical properties of an arc-welded mild steel plate. Indian Journal of Science and Technology, 3(12), 1224–1228. ISSN: ISSN: .
  • Asibeluo, I. S., & Emifonye, E. (2015). Effect of arc welding current on the mechanical properties of A36 carbon steel weld joints. International Journal of Mechanical engineering(SSRG-ISME), 2(9), 32–40.
  • Balasubramanian, V., Varahamoorthy, R., Ramachandran, C. S., & Muralidhavan, C. (2009). Selection of the welding process for hardfacing on carbon steels based on quantitative and qualitative factors. The International Journal of Advanced Manufacturing Technology, 40, 887–32. doi:10.1007/s00170-008-1406-8
  • Boumerzong, Z., Derfouf, C., & Baudin, T. (2010). Effect of welding on microstructure and mechanical properties of an industrial low carbon steel. Engineering. doi:10.4236/eng.2010.27066
  • Cao, X., Jahazi, M., Immarigeon, J. P., & Wallace, W. (2006). A review of laser welding techniques for magnesium alloys. Journal of Materials Processing Technology, 171, 188–204. doi:10.1016/j.jmatprotec.2005.06.068
  • Chen, B., & Zhu, L. (2015) Analysis on the microstructure and mechanical properties of the welding joint of low alloy structural steel plate by narrow gap MAG. International Conference on Mechatronics, Electronics, Industrial and Control Engineering MEIC, China.
  • Cvetkovski, S., Slavkov, D., & Magdes, J. (2003) Welding procedure specification for arc welding of st 52-3N steel plates with covered electrodes. Proceedings of 3rd BMC-2003-Ohrid, Republic of Macedonia.
  • Domanski, T., Sapietova, A., & Saga, M. (2017). Application of abaqus software for the modeling of surface progressive hardening. Procedia Engineering, 177, 64–69. Conference in Boston. doi:10.1016/j.proeng.2017.02.184
  • Dong, L., Qiu, X., Liu, T., Lu, Z., Fang, F., & Hu, X. (2017). Estimation of cooling rate from 800 °C to 500 °C in the welding of intermediate thickness plates based on FEM Simulation. Journal of Materials Science and Engineering, 7, 258–267.
  • Dupunt, J. N., & Marder, A. R. (1995, December). Thermal efficiency of arc welding processes. Welding Research-Supplement, 406–416.
  • Dutta, J., & Narndranath, S. (2014, January). Thermochemical analysis of arc welding carbon steel butt Joints: A parametric study. Reference ID, 37, 1–7.
  • Etin-Osa, C. E., & Achebo, J. I. (2017). Analysis of optimum butt welded joint for mild steel components using FEM (ANSYS). Advances in Applied Sciences, 2(6), 100–109.
  • Goldak, J. A. (2015). Computational welding mechanics. New York,NY: Springer.
  • Graville, B. A. (1973, September). Weld cooling rates and heat-affected zone hardness in a carbon steel. Welding Research-Supplement of the Welding Journal, 54, 377–383.
  • Hinton, R. W., & Wiswesser, R. K. (2008, November). For unknown grades of carbon and low-alloy steels. Welding Research-Supplement to the Welding Journal, 87, 273–278.
  • Khaled, T. (2014). Preheating, interpass and post-weld heat treatment requirements for welding low alloy steels. ANC Report, 6(September), 1–14.
  • Khurmi, R. S., & Gupta, J. K. (1997). A textbook of workshop technology manufacturing processes (pp. 287–328). Nirja Constructtion & Development Co. Ltd.
  • Kumar, R., Anja, H. K., & Saxena, R. K. (2014). Experimental determination of cooling rate and its effect on microhardness in submerged arc welding of mild steel plate(Grade C-25 as per IS1570). Journal of Materials Science and Engineering, 3(2). doi:10.4172/2169-0022.1000138
  • Kumar, R., Arya, H. K., & Saxena, R. K. (2014). Effect of cooling rate on microstructure of saw welded mild steel plate (Grade C 25 as per IS 1570). International Journal of Modern Engineering Research, 4(1), 222–228.
  • Kumar, R., & Kumar, S. (2014). Study of mechanical properties in mild steel using metal inert gas welding(MIG). International Journal of Research in Engineering and Technology, 3(4), 751–756 ISSN:.
  • Kumarkhamari, B., Sahu, P. K., & Biswal, B. B. (2018). Microstructure analysis of arc welded mild steel plate. IOP Conf.Series: Materials Science and Engineering, 377. doi:10.1088/1757-899x/377/1/0/2049
  • Lecoanet, A., Ivey, D. G., & Henein, H. (2014). Simulation of TEMPERATUREPROFILE during welding with COMSOL multiphysics software using Rosenthal’s approach. Excerpt from the Proceedings of the 2014 COMSOL.
  • Liskevych, O., & Scotti, A. (2015). Journal of materials processing technology determination of the gross heat input in arc welding. Journal of Materials Processing Technology, 225, 139–150. doi:10.1016/j.jmatprotec.2015.06.005
  • Malik, M. A., Qureshi, M. E., & Dar, N. U. (2007). Numerical simulation of arc welding investigation of various process and heat Source parameters. Failure of Engineering Materials and Structures, 30, 127–142.
  • Mohammed, R. A., Abdulwahab, M., & Dauda, E. T. (2013). Properties evaluation of shielded metal arc welded medium carbon steel materials. International Journal of Innovative Research in Science Engineering and Technology, 2(8):2013. ISSN: .
  • Mousavi, S. A. A. A., & Kelishami, A. R. (2008). Experimental and numerical analysis of the friction welding process for the 4340 steel and mild steel combinations. Welding Journal, 87(July), 178s–186s.
  • Murugan, S., Kumar, P. V., Gill, T. P. S., Raj, B., & Bose, M. S. C. (1999). Numerical modelling and experimental determination of temperature distribution during manual metal arc welding. Science and Technology of Welding and Joining, 4(6), 357–364.
  • Nassef, G. A., & Abdallah, I. A. (2012). Numerical modeling of heat transfer and fluid flow in keyhole plasma arc welding of dissimilar steel joints. International Journal of Engineering Science and Technology, 4(2), 506–518. ISSN:0975-5462ISSN:.
  • Nunes, A. C. (1983, June). An extended rosenthal weld model. Welding Research Supplement 62(6), 169–170.
  • Pamnani, R., Vasudevan, M., Jayakumar, T., Vasantharaja, P., & Ganesh, K. C. (2016). Numerical simulation and experimental validation of arc welding of DMR-249A steel. Defence Technology, 12(4), 305–315.
  • Parthiban, K., Shanmugam, N. S., & Shankara, K. (2018). Experimental and numerical investigation of charpy impact test of spin arc welded C1018 plates. IOP Conference Series: Materials Science and Engineering, 455(012069). doi:10.1088/1757-899x/455/1/012069
  • Pépe, B. N., Egerland, S., Colegrove, P. A., & Yapp, D. (2011). Measuring the process efficiency of controlled gas metal arc welding processes. Science and Technology of Welding & Joining, 16(5), 412–417.
  • Piekarska, W., & Dorota, G. K. (2016). Prediction of structure and mechanical properties of welded joints using analytical methods. Procedia Engineering, 136, 82–87. doi:10.1016/j.proeng.2016.01.178
  • Piekarska, W., Saga, M., Kroliszewka, D. G., Domanski, T., & Kopaj, P. (2018). Application of analytical methods for determination of hardness distribution in a welded joint made of S1100QLSteel. Matecweb of Conferences, 157(02041). doi:10.1051/matecconf/201815702041
  • Poorhaydari, K., Patchett, B. M., & Ivey, D. G. (2005). Estimation of cooling rate in the welding of plates with intermediate thickness. Welding Journal, 84(10), 149–155.
  • Prasad, K., & DWivedi, D. K. (2008). Some Investigations on microstructure and mechanical properties of submerged arc welded HSLA steel joints. The International Journal of Advanced Manufacturing Technology, 36, 475–483. doi:10.1007/s0v/70-006-0855-1
  • Prasanna, P., Rao, B. S., & Rao, G. K. M. (2010). Experimental and Numerical evaluation of friction stir welds of Aa6061-T6 aluminium alloy. ARPN Journal of Engineering and Applied Sciences, 5(6), 1–18.
  • Ramasamy, N., & Kathiravan, R. (2017). Influence of welding parameters on mechanical properties of high strength low carbon steel of submerged arc butt welds. Indian Jounal of Science Reseach, 14(1):228–235. ISSN:.
  • Rizvi, S. A., Tewari, S. P., & Ali, W. (2013). Weldability of steels and its alloys under different conditions - A review. International Journal of Science, Engineering and Technology Research (IJSETR), 2(3), 539–550.
  • Roblendo, D. M., Alberto, J., & Enrique, J. (2011). Development of a welding procedure for MIL A46100 Armor steel joints gas metal arc welding. Dyna, 78(168):65–71. ISSN.
  • Samardzic, I., Croric, A., & Dunder, M. (2016). Weldability investigation of fine-grained S1100QL Steel. Metalurgija, 3(55), 453–456.
  • Samir, M. (2015). Investigation on effect of heat input on cooling rate and mechanical property (Hardness) of mild steel weld joint by MMAW Process. International Journal of Modern Engineering Research, 5(3), 34–41.
  • Sarkar, A., Rai, R. N., & Saha, S. C. (2015). A study of parametric effects on thermal profile of submerged arc welding process. Journal of Naval Architecture and Marine Engineering. doi:10.3329/Jname.v12i1.22670
  • Scott Funderburk, R. (1998). The importance of interpass temperature. Welding Innovation, XV(1), 1–2.
  • Singh, A., Singh, J., & Kumar, R. (2016). A study of microstructure and hardness in En 31 steel and mild steel welded joints using TIG welding. International Journal of Engineering Science and Computing, 6(10), 2849–2854.
  • Singh, R. P. (2012). Parametric effect on mechanical properties in submerged arc welding process-A review. International Journal of Engineering Science and Technology, 4(2), 747–757ISSN:.
  • Slezak, T., & Sniezek, L. (2014). Fatigue properties and cracking of high strenght steel S1 100QL welding joints. Key Engineering Materials, 598(237–242). doi:10.4028/www.scientific.net/KEM.598.237
  • Sloderbach, Z., & Pajak, J. (2015). Determination of ranges of components of the heat affected zone including changes of structure. Archives of Metallurgy and Materials, 60(4). doi:10.515/amm-2015-0421
  • Soy, U., Lyibilgin, O., Findik, F., Oz, C., & Kiyan, Y. (2011). Determination of welding parameters for shielded metal arc welding. Scientific Research and Essays, 6(15), 3153–3260. doi:10.5897/SRE10.1073
  • Stenbacka, N., Choquet, I., & Hurtig, K. (2012). IIW commission IV-XII-SG212 intermediate meeting review of arc efficiency values for gas tungsten arc welding. IIW Commission Berlin Germany, 1–21.
  • Sykora, A. J. (2015, June). Finite element analysis of heat distribution and cooling in welding (Ph.D. Thesis). Charles Darwin University, School of Engineering and Information Technology, Faculty of Education, Health, Science and the Environment.
  • Tahir, A. M., Lair, N. A. M., & Wei, F. J. (2018). Investigation on mechanical properties of welded materials under different types of welding filler(Shielded metal arc welding). AIP Conference Proceedings 1958, Selangor, Malaysia, 020003. doi:10.1063/1.5034534.
  • Talabi, S. I., Owolabi, O. B., Adebisi, J. A., & Yahaya, I. (2014). Effect of welding variables on mechanical properties of low carbon steel welded joints. Advances in Production Engineering & Management, 9(4), 181–186. ISSN. doi:10.14743/apem2014.4186
  • Tsuei, H.-E. (2000). Analysis and modeling of weld metal mechanical properties in flux cored arc welded steels (Doctor of Philosophy Thesis). Department of Materials Engineering University of Wollongong, 200. Retrieved from http://ro.uow.edu.au/theses/1484