1,753
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of installation and environmental parameters on soiling of roof-mounted solar photovoltaic array

ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1649007 | Received 31 May 2019, Accepted 22 Jul 2019, Published online: 13 Aug 2019

References

  • Abiola-Ogedengbe, A., Hangan, H., & Siddiqui, K. (2015). Experimental investigation of wind effects on a standalone photovoltaic (PV) module. Renewable Energy, 78, 657–19. doi:10.1016/j.renene.2015.01.037
  • Adinoyi, M. J., & Said, S. A. M. (2013). Renewable energy. Effect of Dust Accumulation on the Power Outputs of Solar Photovoltaic Modules, 60, 633–636. doi:10.1016/j.renene.2013.06.014. Technical note
  • Arora, R., & Arora, R. (2018). Experimental investigations and exergetic assessment of 1 kW solar PV plant. Pertanika Journal of Science & Technology, 26(4), 1881–1897.
  • Arora, R., Arora, R., & Sridhara, S. N. (2019). Performance assessment of 186 kWp grid interactive solar photovoltaic plant in Northern India. International Journal of Ambient Energy, 1–28. doi:10.1080/01430750.2019.1630312
  • Arora, R., Kaushik, S. C., & Kumar, R. (2016a). Multi-objective thermodynamic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making. Applied Solar Energy, 52(4), 295–304. doi:10.3103/S0003701X16040046
  • Arora, R., Kaushik, S. C., & Kumar, R. (2017). Multi-objective thermodynamic optimisation of solar parabolic dish Stirling heat engine using NSGA-II and decision making. International Journal of Renewable Energy Technology, 8(1), 64–92. doi:10.1504/IJRET.2017.080873
  • Arora, R., Kaushik, S. C., Kumar, R., & Arora, R. (2016b). Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making. International Journal of Electrical Power & Energy Systems, 74, 25–35. doi:10.1016/j.ijepes.2015.07.010
  • Chen, C.-Y., Chesnutt, J. K. W., Chien, C. H., Guo, B., & Wu, C.-Y. (2019). Dust removal from solar concentrators using an electrodynamic screen. Solar Energy, 187, 341–351. doi:10.1016/j.solener.2019.05.044
  • Chiteka, K., Arora, R., & Jain, V. (2019). CFD Prediction of dust deposition and installation parametric optimisation for soiling mitigation in non-tracking solar PV modules. International Journal of Ambient Energy, 1–14. doi:10.1080/01430750.2019.1594373
  • Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059–1082. doi:10.1016/j.apenergy.2009.09.026
  • Elminir, H. K., Ghitas, A. E., Hamid, R. H., El-Hussainy, F., Beheary, M. M., & Abdel-Moneim, K. M. (2006). Effect of dust on the transparent cover of solar collectors. Energy Conversion and Management, 47(18–19), 3192–3203. doi:10.1016/j.enconman.2006.02.014
  • El-Nashar, A. M. (1994). The effect of dust accumulation on the performance of evacuated tube collectors. Solar Energy, 53(1), 105–115. doi:10.1016/S0038-092X(94)90610-6
  • El-Shobokshy, M. S., & Hussein, F. M. (1993). Effect of dust with different physical properties on the performance of photovoltaic cells. Solar Energy, 51(6), 505–511. doi:10.1016/0038-092X(93)90135-B
  • Enkhardt, S. (2018, November 30). PV info link expects solar demand to reach 112 GW in 2019 (PV Magazine - Photovoltaics Markets and Technology). Retrieved from https://www.pv-magazine.com/2018/11/30/pv-info-link-expects-solar-demand-to-reach-112-gw-in-2019/
  • Goossens, D., & Kerschaever, E. V. (1999). Aeolin dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Solar Energy, 66, 277–289. doi:10.1016/S0038-092X(99)00028-6
  • Goossens, D., Offer, Z. Y., & Zangvil, A. (1993). Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors. Solar Energy, 50(1), 75–84. doi:10.1016/0038-092X(93)90009-D
  • Guo, B., Javed, W., Khoo, Y. S., & Figgis, B. (2019). Solar PV soiling mitigation by electrodynamic dust shield in field conditions. Solar Energy, 188, 271–277. doi:10.1016/j.solener.2019.05.071
  • Heggøy, M. W. (2017). Numerical investigation of particle dispersion in a gravitational field and in zero gravity (Master of Science Thesis). The University of Bergen, Department of Physics and Technology
  • Heydarabadi, H., Abdolzadeh, M., & Lari, K. (2017). Simulation of airflow and particle deposition settled over a tilted photovoltaic module. Energy, 139, 1016–1029. doi:10.1016/j.energy.2017.08.023
  • Jiang, Y., Lu, L., & Lu, H. (2016). A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment. Solar Energy, 140, 236–240. doi:10.1016/j.solener.2016.11.016
  • Justus, C. G., & Mikhail, A. (1976). Height variation of wind speed and wind distributions statistics. Geophysical Research Letters, 3(5), 261–264. doi:10.1029/GL003i005p00261
  • Karava, P., Jubayer, C. M., & Savory, E. (2011). Numerical modelling of forced convective heat transfer from the inclined windward roof of an isolated low-rise building with application to photovoltaic/thermal systems. Applied Thermal Engineering, 31(11), 1950–1963. doi:10.1016/j.applthermaleng.2011.02.042
  • Kawamoto, H., & Guo, B. (2018). Improvement of an electrostatic cleaning system for removal of dust from solar panels. Journal of Electrostatics, 91, 28–33. doi:10.1016/j.elstat.2017.12.002
  • Klinkov, S. V., Kosarev, V. F., & Rein, M. (2005). Cold spray deposition: Significance of particle impact phenomena. Aerospace Science and Technology, 9(7), 582–591. doi:10.1016/j.ast.2005.03.005
  • Kumar, N. M., Sudhakar, K., Samykano, M., & Sukumaran, S. (2018). Dust cleaning robots (DCR) for BIPV and BAPV solar power plants-A conceptual framework and research challenges. Procedia Computer Science, 133, 746–754. doi:10.1016/j.procs.2018.07.123
  • Lee, H., Wray, T., & Agarwal, R. K. (2016). CFD performance of turbulence models for flow from supersonic nozzle exhausts. 34th AIAA Applied Aerodynamics Conference. Presented at the 34th AIAA Applied Aerodynamics Conference, Washington, DC. doi:10.2514/6.2016-3433
  • Li, X., Dunn, P. F., & Brach, R. M. (2000). experimental and numerical studies of microsphere oblique impact with planar surfaces. Journal of Aerosol Science, 31(5), 583–594. doi:10.1016/S0021-8502(99)00544-3
  • Liu, S., Pan, W., Cheng, X., Zhang, H., Long, Z., & Chen, Q. (2018). CFD simulations of wind flow in an urban area with a full-scale geometrical model. 4th International conference on building energy, environment, COBEE2018-Paper063, Melbourne, Australia (pp. 174–179).
  • Lu, H., Lu, L., & Wang, Y. (2016). Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building. Applied Energy, 180, 27–36. doi:10.1016/j.apenergy.2016.07.030
  • Lu, H., & Zhang, L. (2018). Numerical study of dry deposition of monodisperse and polydisperse dust on building-mounted solar photovoltaic panels with different roof inclinations. Solar Energy, 176, 535–544. doi:10.1016/j.solener.2018.10.068
  • Lu, H., & Zhang, L.-Z. (2019). Influences of dust deposition on ground-mounted solar photovoltaic arrays: A CFD simulation study. Renewable Energy, 135, 21–31. doi:10.1016/j.renene.2018.11.096
  • Lu, H., & Zhao, W. (2018). Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system. Applied Energy, 220, 514–526. doi:10.1016/j.apenergy.2018.03.095
  • Lu, H., & Zhao, W. (2019). CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system. Renewable Energy, 131, 829–840. doi:10.1016/j.renene.2018.07.112
  • Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307–1316. doi:10.1016/j.rser.2016.01.044
  • Mailuha, J. T., Murase, H., & Inoti, I. K. (1994). Knowledge engineering-based studies on solar energy utilization in Kenya. Agriculture Mechanization in Asia, Africa, and Latin America, 25, 13–16.
  • Mani, M., & Pillai, R. (2010). Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and Sustainable Energy Reviews, 14(9), 3124–3131. doi:10.1016/j.rser.2010.07.065
  • Mekhilef, S., Saidur, R., & Kamalisarvestani, M. (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews, 16(5), 2920–2925. doi:10.1016/j.rser.2012.02.012
  • Mozumder, M. S., Mourad, A. H. I., Pervez, H., & Surkatti, R. (2019). Recent developments in multifunctional coatings for solar panel applications: A review. Solar Energy Materials and Solar Cells, 189, 75–102. doi:10.1016/j.solmat.2018.09.015
  • Mussard, M., & Amara, M. (2018). Performance of solar photovoltaic modules under arid climatic conditions: A review. Solar Energy, 174, 409–421. doi:10.1016/j.solener.2018.08.071
  • Pavan, A. M., Mellit, A., De Pieri, D., & Kalogirou, S. A. (2013). A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants. Applied Energy, 108, 392–401. doi:10.1016/j.apenergy.2013.03.023
  • Said, S. A. M., Hassan, G., Walwil, H. M., & Al-Aqeeli, N. (2018). The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renewable and Sustainable Energy Reviews, 82, 743–760. doi:10.1016/j.rser.2017.09.042
  • Sarver, T., Al-Qaraghuli, A., & Kazmerski, L. L. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733. doi:10.1016/j.rser.2012.12.065
  • Sayyah, A., Horenstein, M. N., & Mazumder, M. K. (2014). Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy, 107, 576–604. doi:10.1016/j.solener.2014.05.030
  • Tanesab, J., Parlevliet, D., Whale, J., & Urmee, T. (2019). The effect of dust with different morphologies on the performance degradation of photovoltaic modules. Sustainable Energy Technologies and Assessments, 31, 347–354. doi:10.1016/j.seta.2018.12.024
  • Tominaga, Y., Akabayashi, S. I., Kitahara, T., & Arinami, Y. (2015). Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations. Building and Environment, 84, 204–213. 10.1016/j.buildenv.2014.11.012
  • Twidell, J., & Weir, T. (2015). Renewable energy resources (Third ed.). London: Routledge, Taylor & Francis Group.
  • Wang, P., Xie, J., Ni, L., Wan, L., Ou, K., Zheng, L., & Sun, K. (2018). Reducing the effect of dust deposition on the generating efficiency of solar PV modules by super-hydrophobic films. Solar Energy, 169, 277–283. doi:10.1016/j.solener.2017.12.052
  • Williams, S. (n.d.). High rise solar panel cleaning completed in Bromley. Retrieved from http://www.solar-panel-cleaners.com/high-rise-solar-panel-cleaning-completed-in-bromley
  • Xu, R., Ni, K., Hu, Y., Si, J., Wen, H., & Yu, D. (2017). Analysis of the optimum tilt angle for a soiled PV panel. Energy Conversion and Management, 148, 100–109. doi:10.1016/j.enconman.2017.05.058
  • Zhang, X. (2009). CFD simulation of neutral ABL flows (Risø-R_1688 (EN), 1–40). Risø DTU National Laboratory for Sustainable Energy. Technical University of Denmark, Roskilde, Denmark.
  • Zhang, Z., & Chen, Q. (2009). Prediction of particle deposition onto indoor surfaces by CFD with a modified Lagrangian method. Atmospheric Environment, 43(2), 319–328. doi:10.1016/j.atmosenv.2008.09.041
  • Zhao, B., Zhang, Y., Li, X., Yang, X., & Huang, D. (2004). Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. Building and Environment, 39, 1–8. doi:10.1016/j.buildenv.2003.08.002
  • Zhu, L., Li, A., & Wang, Z. (2018). Analysis of particle trajectories in a quick-contact cyclone reactor using a discrete phase model. Separation Science and Technology, 53(6), 928–939. doi:10.1080/01496395.2017.1386683