2,014
Views
5
CrossRef citations to date
0
Altmetric
ELECTRICAL & ELECTRONIC ENGINEERING

Performance optimization of energy harvesting solutions for 0.18um CMOS circuits in embedded electronics design

ORCID Icon | (Reviewing editor)
Article: 1772947 | Received 06 Dec 2019, Accepted 13 May 2020, Published online: 12 Jun 2020

References

  • Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3), R1. https://doi.org/10.1088/0964-1726/16/3/R01
  • Başak, M. E., & Kaçar, F. (2015). A new fully integrated high frequency fullwave rectifier realization. Journal of Microelectronics, Electronic Components and Materials, 45(2), 101–23. http://www.midem-drustvo.si/Journal%20papers/MIDEM_45(2015)2p101.pdf
  • Cevik, I., Huang, X., Yu, H., Yan, M., & Ay, S. U. (2015). An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability. Sensors, 15(3), 5531–5554. https://doi.org/10.3390/s150305531
  • Cook, B. W., Lanzisera, S., & Pister, K. S. J. (2006). SoC issues for RF smart dust. Proceedings of the IEEE, 94(6), 1177–1196. https://doi.org/10.1109/JPROC.2006.873620
  • Din, A. U., Chung, D., Park, D., Lee, H., & Lee, J.-W. 2014. A high extraction self-controllable CMOS resonant rectifier circuit for piezoelectric energy scavenging system. In Proceedings of the 2014 International SoC Design Conference (ISOCC), 3–6 November pp. 40–41.
  • Do, X.-D., Nguyen, H. H., Han, S. K., & Lee, S.-G. 2013. A rectifier for piezoelectric energy harvesting system with series synchronized switch harvesting inductor. In Proceedings of the 2013 IEEE Asian solid-state circuits conference (A-SSCC), 11–13 November pp. 10–13.
  • Gilbert, J. M., & Balouchi, F. (2018, October). Comparison of energy harvesting systems for wireless sensor networks. International Journal of Automation and Computing, 5(4), 334–347. https://doi.org/10.1007/s11633-008-0334-2
  • Guo, S., & Lee, H. (2009). An efficiency-enhanced CMOS rectifier with unbalanced-bias comparators for transcutaneous power high-current implants. IEEE Journal of Solid-State Circuits, 44(6), 1796–1804. https://doi.org/10.1109/JSSC.2009.2020195
  • Horowitz, P., & Hill, W. (1989). The art of electronics (2nd ed.). Cambridge University Press.
  • Jin, W., Wang, Z., Huang, H., Hu, X., He, Y., Li, M., Li, L., Gao, Y., Hu, Y., & Gu, H. (2018). High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr,Ti)O3 nanorod arrays. RSC Advances, 8(14), 7422–7427. https://doi.org/10.1039/C7RA13506H
  • Kamarudin, S., Daud, W., Ho, S., & Hasran, U. (2007). Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). Journal of Power Sources, 163(2), 743–754. https://doi.org/10.1016/j.jpowsour.2006.09.081
  • Kwon, D., & Rincón-Mora, G. A. F. (2014). A single-inductor 0.35 m CMOS energy-investing piezoelectric harvester. IEEE Journal of Solid-State Circuits, 49(10), 2277–2291. https://doi.org/10.1109/JSSC.2014.2342721
  • Li, P., & Bashirullah, R. (2017, October). A wireless power interface for rechargeable battery operated medical implants. IEEE Transactions on Circuits and Systems II, Exp.Briefs, 54(10), 912–916. https://doi.org/10.1109/TCSII.2007.901613.
  • Lu, C., Tsui, C. Y., & Ki, W. H. (2011). Vibration energy scavenging system with maximum power tracking for micropower applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(11), 2109–2119. https://doi.org/10.1109/TVLSI.2010.2069574
  • Lu, C., Tsui, C. Y., & Ki, W. H. 2017. Vibration energy scavenging and management for ultra low power applications. In Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), 27–29 August; pp. 316–321.
  • Martinez, T., Pillonnet, G., & Costa, F. (2018). A 15-mV Inductor-less start-up converter using a piezoelectric transformer for energy harvesting applications. IEEE Transactions on Power Electronics, 33(3), 2241–2253. https://doi.org/10.1109/TPEL.2017.2690804
  • Mitcheson, P. D., Green, T. C., Yeatman, E. M., & Holmes, A. S. (2004). Architectures for vibration driven micropower. Journal of Microelectromechanical Systems, 13(3), 429–440. https://doi.org/10.1109/JMEMS.2004.830151
  • Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., & Green, T. C. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9), 1457–1486. https://doi.org/10.1109/JPROC.2008.927494
  • Niu, D., Huang, Z., Jiang, M., & Inoue, Y. (2012, July). A Sub-0.3V highly efficient CMOS rectifier for energy harvesting applications. Ieice Nolta, 3(3), 405–416. https://doi.org/10.1587/nolta.3.405
  • Ottman, G. K., Hofmann, H. F., Bhatt, A. C., & Lesieutre, G. A. (2012, September). Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics, 17(5), 669–676. https://doi.org/10.1109/TPEL.2002.802194
  • Peters, C., Handwerker, J., Maurath, D., & Manoli, Y. (2011, July). A sub-500 mV highly efficient active rectifier for energy harvesting applications. IEEE Transactions on Circuits and Systems I: Regular Papers, Reg. Papers, 58(7), 1542–1550. https://doi.org/10.1109/TCSI.2011.2157739.
  • Pop, V., Bergveld, H. J., Notten, P. H. L., Regtien, P. P. L., Op Het Veld, J. H. G., & Danilov, D. (2007). Battery aging and its influence on the electro-motive force. Journal of the Electrochemical Society, 154(8), A744–50. https://doi.org/10.1149/1.2742296
  • Qiang, L., Zhang, R., Huang, Z., & Inoue, Y. 2010 A low Voltage CMOS rectifier for wirelessly powered devices. IEEE international symposium on circuits and systems, pp.873–876, May
  • Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., & Srivastava, M. B. 2015. Design considerations for solar energy harvesting wireless embedded systems. Proc. IPSN, Apr. 25–27, pp. 457–462.
  • Renaud, M., Fiorini, P., & Van Hoof, C. (2007). Optimization of a piezoelectric unimorph for shock and impact energy harvesting. Smart Materials and Structures, 16(4), 1125–1135. https://doi.org/10.1088/0964-1726/16/4/022
  • Renaud, M., Sterken, T., Fiorini, P., Puers, R., Baert, K., & Van Hoof, C. 2005. Harvesting energy from human-body: Design of a piezoelectric transducer. In: Proceedings of the 13th int conf on solid–state sensors, actuators and microsystems, transducers 2005. p. 784–787.
  • Sauer, C., Stanac´evic´, M., Cauwenberghs, G., & Thakor, N. (2015, December). Power harvesting and telemetry in CMOS for implanted devices. IEEE Transactions on Circuits and Systems I, Reg. Papers, 52(12), 2605–2613. https://doi.org/10.1109/TCSI.2005.858183.
  • Shenck, N. S., & Paradiso, J. A. (2001). Energy harvesting with shoe-mounted piezoelectrics. IEEE Micro, 21(3), 30–42. https://doi.org/10.1109/40.928763
  • Siddiqui, S., Lee, H. B., Kim, D. I., Duy, L. T., Hanif, A., & Lee, N. E. (2018). An omnidirectionally stretchable piezoelectric nanogenerator based on hybrid nanofibers and carbon electrodes for multimodal straining and human kinematics energy harvesting. Advanced Energy Materials, 8(2), 1701520. https://doi.org/10.1002/aenm.201701520
  • Sterken, T., Baert, K., Van Hoof, C., Puers, R., Borghs, G., & Fiorini, P. 2004. Comparative modeling for vibration harvesters. In: Proceedings of IEEE sensors conference. p. 1249–1252.
  • Sterken, T., Fiorini, P., Baert, K., Puers, R., & Borghs, G. 2003. An electret-based electrostatic micro-generator. In: Proceedings of the 12th int conf on solid-state sensors, actuators and microsystems transducers. p. 1291–1294.
  • Sterken, T., Fiorini, P., & Puers, R. (2007). Motion-based generators for industrial applications. In Proceedings of international conference on design, test, integration and packaging of MEMS/MOEMS; 2007 (pp. 328–331). Stresa, Italy.
  • Sun, Y., Hieu, N. H., Joeng, C. J., & Lee, S. G. (2012). An integrated high-performance active rectifier for piezoelectric vibration energy harvesting system. IEEE Transactions on Power Electronics, 27(2), 623–627. https://doi.org/10.1109/TPEL.2011.2162078
  • Torfs, T., Leonov, V., & Van Hoof, C. 2006. Bert gyselinckx body-heat powered autonomous pulse oximeter. In: 5th IEEE conference on sensors. p. 427–430.
  • Yen, B. C., & Lang, J. H. (2006, February). A variable-capacitance vibration-to-electric energy harvester. IEEE Transactions on Circuits and Systems I, Reg. Papers, 53(2), 288–295. https://doi.org/10.1109/TCSI.2005.856043.
  • Yildiz, F. (2007). Potential Ambient Energy-Harvesting Sources and Techniques. J. Technol. Stud. 40–48.
  • Zhao, T., Fu, Y., He, H., Dong, C., Zhang, L., Zeng, H., Xing, L., & Xue, X. (2018). Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric–enzymatic reaction coupling process. Nanotechnology, 29(7), 075501. https://doi.org/10.1088/1361-6528/aaa2b9