1,087
Views
3
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Applying boundary element method to simulate a high-skew Controllable Pitch Propeller with different hub diameters for preliminary design purposes

& | (Reviewing editor)
Article: 1805857 | Received 14 May 2020, Accepted 27 Jul 2020, Published online: 17 Aug 2020

References

  • Benek, J. A., Steger, J. L., & Dougherty, F. C. (1983). A flexible grid embedding technique with application to the Euler equations. AIAA, 6th Computational Fluid Dynamics Conference; AIAA Paper No. 1983-1944.
  • Bennaya, M., Gong, J., Hegaze, M. M., & Zhang, W. (2013). Numerical simulation of marine propeller hydrodynamic performance in uniform inflow with different turbulence models. Applied Mechanics and Materials, 389, 1019–26. https://doi.org/10.4028/www.scientific.net/AMM.389.1019
  • Brizzolara, S., Villa, D., & Gaggero, S. (2008). A systematic comparison between RANS and panel method for propeller analysis. Proceeding of the 8th international conference on hydrodynamics, Nantes, 30 Sep - 3 Oct.
  • Carlton, J. S. (2007). Marine propellers and propulsion (second ed.). Butterworth-Heinemann.
  • Dubbioso, G., Muscari, R., & Mascio, A. D. (2013). Analysis of the performances of a marine propeller operating in oblique flow. Computers & Fluids, 75, 86–102. https://doi.org/10.1016/j.compfluid.2013.01.017
  • Felice, F. D., Felli, M., Liefvendahl, M., & Svennberg, U. (2009). Numerical and experimental analysis of the wake behavior of a generic submarine propeller, First International Sympsium of Marine Propulsor, Trondheim, Norway.
  • Fujisawa, J., Ukon, Y., Kume, K., & Takeshi, H. (2000). Local velocity field measurements around the KCS model (SRI M.S.No.631) in the SRI 400 m towing tank. ShipPerform. Div. Rep. No., 00–003-02.
  • Gaafary, M. M., EL-Kilani, H. S., & Moustafa, M. M. (2011). Optimum design of B-series marine propellers. Alexandria Engineering Journal, 50(1), 13–18. https://doi.org/10.1016/j.aej.2011.01.001
  • Gaggero, S., Dubbioso, G., Villa, D., Muscari, R., & Viviani, M. (2019). Propeller modeling approaches for off–design operative conditions. Ocean Engineering, 178, 283–305. https://doi.org/10.1016/j.oceaneng.2019.02.069
  • Gaggero, S., Villa, D., & Brizzolara, S. (2010). RANS and PANEL method for unsteady flow propeller analysis. 9th International Conference on Hydrodynamics, October 11-15, Shanghai, China.
  • Greco, L., Muscari, R., Testa, C., & Di Mascio, A. (2014). Marine propellers performance and flow-field prediction by a free-wake panel method. Journal of Hydrodynamics, 26(5), 780–795. https://doi.org/10.1016/S1001-6058(14)60087-1
  • Henshaw, W. D., & Schwendeman, D. W. (2006). Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow. Journal of Computational Physics, 216(2), 744–779. https://doi.org/10.1016/j.jcp.2006.01.005
  • Hess, J. L. (1972). Calculation of potential flow around arbitrary three dimensional lifting bodies, Report no. MDC J5679-01, McDonnell Douglas Corporation.
  • Hess, J. L., & Smith, A. M. O. (1962). Calculation of non-lifting potential flow about arbitrary 3-D bodies. Douglas Aircraft Report E.S. 40622.
  • Hess, J. L., & Valarezo, W. O. (1985). Calculation of steady flow around propellers by means of a surface panel method. In: Proceedings of the 23rd Aerospace Sciences Meeting, AIAA, Reno, Nev.
  • Jessup, S. (1982). Measurements of the pressure distribution on two model propellers, DTNSRDC82/035 Technical Report.
  • Jessup, S. D. (1989). An experimental investigation of viscous effects of propeller blade flow (PhD Thesis), The Catholic University of America.
  • Katz, J., & Plotkin, A. (1991). Low-speed aerodynamics. McGraw-Hill.
  • Lim, -S.-S., Kim, T.-W., Lee, D.-M., Kang, C.-G., & Kim, S.-Y. (2014). Parametric study of propeller boss cap fins for container ships. International Journal of Naval Architecture and Ocean Engineering, 6(2), 187–205. https://doi.org/10.2478/IJNAOE-2013-0172
  • Meakin, R. L., & Suhs, N. E. (1989). Unsteady aerodynamic simulation of multiple bodies in relative motion. AIAA, 9th Computational Fluid Dynamics Conference; AIAA Paper No. 1989-1996.
  • Miglianti, L., Cipollini, F., Oneto, L., Tani, G., Gaggero, S., Coraddu, A., & Viviani, M. (2020). Predicting the cavitating marine propeller noise at design stage: A deep learning based approach. Ocean Engineering, 209, 107481. https://doi.org/10.1016/j.oceaneng.2020.107481
  • Najafi, S., & Abbaspoor, M. (2017). Numerical investigation of flow pattern and hydrodynamic forces of submerged marine propellers using unsteady boundary element method. Engineering for the Maritime Environment, Published online, 233(1), 1–13. https://doi.org/10.1177/1475090217717174
  • Najafi, S., & Abbaspour, M. (2017). Numerical study of propulsion performance in swimming fish using boundary element method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(2), 443–455. https://doi.org/10.1007/s40430-016-0613-8
  • Ochi, F., Fujisawa, T., Ohmori, T., & Kawamura, T. (June 2009). Simulation of propeller hub vortex flow. First international symposium on marine propulsors, Trondheim, Norway.
  • Politis, G. K. (2004). Simulation of unsteady motion of a propeller in a fluid including free wake modeling. Engineering Analysis with Boundary Elements, 28(6), 633–653. https://doi.org/10.1016/j.enganabound.2003.10.004
  • Politis, G. K. (2005). unsteady rollup modeling for wake adapted propellers using a time stepping method. Journal of Ship Research, 49(3), 216–231.
  • Politis, G. K. (2011). Application of a BEM time stepping algorithm in understanding complex unsteady propulsion hydrodynamic phenomena. Ocean Engineering, 38(4), 699–711. https://doi.org/10.1016/j.oceaneng.2011.01.001
  • Rahman, A., Ullah, M. R., & Karim, M. M. (2017). Marine propeller design method based on lifting line theory and lifting surface correction factors. Procedia Engineering, 194(174), 256. https://doi.org/10.1016/j.proeng.2017.08.132
  • Shamsi, R., Ghassemi, H., Molyneux, D., & Liu, P. (2014). Numerical hydrodynamic evaluation of propeller (with hub taper) and podded drive in azimuthing conditions. Ocean Engineering, 76, 121–135. https://doi.org/10.1016/j.oceaneng.2013.10.009
  • Song, B.-W., Wang, Y.-J., & Tian, W.-L. (2015). Open water performance comparison between hub-type and hubless rim driven thrusters based on CFD method. Ocean Engineering, 103, 55–63. https://doi.org/10.1016/j.oceaneng.2015.04.074
  • Wang, L.-Z., Guo, C.-Y., Su, Y.-M., & Wu, T.-C. (2018). a numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers. International Journal of Naval Architecture and Ocean Engineering, 10(2), 212–224. https://doi.org/10.1016/j.ijnaoe.2017.07.001
  • Zhu, Q., Wolfgang, M. J., YUE, D. K. P., & Triantafyllou, M. S. (2002). Three-dimensional flow structures and vorticity control in fish-like swimming. Journal of Fluid Mechanics, 468, 1–28. https://doi.org/10.1017/S002211200200143X