1,921
Views
1
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Field monitoring and numerical analysis of ground deformation induced by tunnelling beneath an existing tunnel

ORCID Icon, , & ORCID Icon | (Reviewing editor)
Article: 1861731 | Received 30 Oct 2020, Accepted 30 Nov 2020, Published online: 20 Jan 2021

References

  • Addenbrooke, T. I., & Potts, D. M. (2001). Twin tunnel interaction: Surface and subsurface effects. International Journal of Geomechanics, 1(2), 249–19. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:2(249)
  • Al-Omari, R. R., Medhat, S. A., & Osamah, I. A. (2019). Effect of tunnel progress on the settlement of existing piled foundation”. Studia Geotechnica Et Mechanica, 41(2), 102–113. https://doi.org/10.2478/sgem-2019-0008
  • Avgerinos, V., Potts, D. M., & Standing, J. R. (2017). Numerical investigation of the effects of tunnelling on existing tunnels. Géotechnique, 67(9), 808–822. https://doi.org/10.1680/jgeot.SiP17.P.103
  • Bilotta, E., Paolillo, A., Russo, G., & Aversa, S. (2017). Displacements induced by tunnelling under a historical building. Tunnelling and Underground Space Technology, 61, 221–232. https://doi.org/10.1016/j.tust.2016.10.007
  • Bousbia, N., & Messast, S. (2015). Numerical modelling of two parallel tunnels interaction using three dimensional finite elements method. Geomechanics and Engineering, 9(6), 775–791. https://doi.org/10.12989/gae.2015.9.6.775
  • Chakeri, H., Hasanpour, R., Hindistan, M. A., & Ünver, B. (2011). Analysis of interaction between tunnels in soft ground by 3D numerical modelling. Bulletin of Engineering Geology and the Environment, 70(3), 439–448. https://doi.org/10.1007/s10064-010-0333-8
  • Chapman, D. N., Rogers, C. D. F., & Hunt, D. V. L. (2002). Prediction of settlement above closely spaced multiple tunnel constructions in soft ground. Proceedings of the Third International Symposium on the Geotechnical Aspects of Underground Construction in Soft Ground, 299–300.
  • Dilapidation Report for CWO crossing. (2010). 160-G2-JVC-004-N-005-A, issued by Cairo metro line 3 joint venture g2 for civil works.
  • Do, N. A., Dias, D., Oreste, P., & Djeran-Maigre, I. (2014). 2D numerical investigations of twin tunnel interaction. Geomechanics and Engineering, 6(3), 263–275. https://doi.org/10.12989/gae.2014.6.3.000
  • El-Nahhas, F. M. (1986). Spatial mode of ground subsidence above advancing shielded tunnels. Proceeding of the International Congress on Large Underground Opening, Firenze, Italy, 1, 720–725.
  • El-Nahhas, F. M. (1999). Soft ground tunnelling in Egypt. Geotechnical challenges and expectations. Tunnelling and Underground Space Technology, 14(3), 245–256. https://doi.org/10.1016/S0886-7798(99)00041-3
  • El-Shourbagy, M. A. (2016). Numerical simulation of shield tunneling, with special application on tunnels crossing in Cairo [PhD. Thesis]. Department of Structural Engineering, Faculty of Engineering, Cairo University.
  • Gue, C. Y., Wilcock, M. J., Alhaddad, M. M., Elshafie, M. Z., Soga, K., & Mair, R. J. (2017). Tunnelling close beneath an existing tunnelling clay – Perpendicular undercrossing. Géotechnique, 67(9), 795–807. https://doi.org/10.1680/jgeot.SiP17.P.117
  • He, C., Zhou, S., Di, H., & Yang, X. (2019). Effect of Dynamic Interaction of Two Neighboring Tunnels on Vibrations from Underground Railways in the Saturated Soil. KSCE Journal of Civil Engineering, 23(11), 4651-4661. DOI: 10.1007/s12205-019-0084-4
  • Huo, R., Zhou, P., Song, Z., Wang, J., Li, S., & Zhang, Y. (2019). Study on the settlement of large-span metro station’s baseplate caused by the tunnels newly built beneath it. Advances in Mechanical Engineering, 11(2), 2. https://doi.org/10.1177/1687814018825161
  • La, Y. S., Kim, B., Jang, Y. S., & Choi, W. H. (2018). Stress interactions between two asymmetric noncircular tunnels. Geomechanics and Engineering, 15(3), 869–877. https://doi.org/10.12989/gae.2018.15.3.869
  • Li, P., Lu, Y., Lai, J., Liu, H., & Wang, K. (2020). A comparative study of protective schemes for shield tunnelling adjacent to pile groups. Advances in Civil Engineering, 2020, 1-16. https://doi.org/10.1155/2020/6964314
  • Liang, R., Xia, T., Hong, Y., & Yu, F. (2016). Effects of above-crossing tunnelling on the existing shield tunnels. Tunnelling and Underground Space Technology, 58, 159–176. https://doi.org/10.1016/j.tust.2016.05.002
  • Lin, X. T., Chen, R. P., Wu, H. N., & Cheng, H. Z. (2019). Deformation behaviours of existing tunnels caused by shield tunnelling undercrossing with oblique angle. Tunnelling and Underground Space Technology, 89, 78–90. https://doi.org/10.1016/j.tust.2019.03.021
  • Liu, H. Y., Small, J. C., Carter, J. P., & Williams, D. J. (2009). Effects of tunnelling on existing support systems of perpendicularly crossing tunnels. Computers and Geotechnics, Elsevier Science Ltd., 36(5), 880–894. https://doi.org/10.1016/j.compgeo.2009.01.013
  • Mayoral, J. M., Roman-de la Sancha, A., Osorio, L., & Martinez, S. (2013). Numerical analysis of a tunnel intersection. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 769–772. https://www.issmge.org/uploads/publications/1/2/769-772.pdf
  • Mazek, S. A., & Almannaei, H. A. (2013). Finite element model of Cairo metro tunnel-Line performance. Ain Shams Engineering Journal, 4(4), 709–716. https://doi.org/10.1016/j.asej.2013.04.002
  • MIDAS/GTSNX (v.1.0.0) (2014), manual - copyright since1989 MIDAS Information Technology Co. Ltd., http://manual.midasuser.com/en_common/GTS%20NX/100/GTX.htm
  • Mooney, M. A., Grasmick, J., Kenneally, B., & Fang, Y. (2016). The role of slurry TBM parameters on ground deformation: Field results and computational modelling. Tunnelling and Underground Space Technology, 57, 257–264. https://doi.org/10.1016/j.tust.2016.01.007
  • Nematollahi, M., & Diasb, D. (2020). Interaction between an underground parking and twin tunnels – Case of the Shiraz subway line. Tunneling and Underground Space Technology, 95, 103150. https://doi.org/10.1016/j.tust.2019.103150
  • Ng, C. W., Boonyarak, T., & Mašín, D. (2004). Three-dimensional centrifuge and numerical modelling of the interaction between perpendicularly crossing tunnels. Canadian Geotechnical Journal, 50(9), 935–946. https://doi.org/10.1139/t04-008
  • Ng, C. W. W., Lee, K. M., & Tang, D. K. W. (2004). Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions. Canadian Geotechnical Journal, 41(3), 523–529. https://doi.org/10.1139/t04-008
  • Sadjadi, F., & Khalkhali, A. B. (2018). Geotechnical challenges of Tehran metro line 7 (South Northern Route). Civil Engineering Journal, 4(5), 1117–1126. https://doi.org/10.28991/cej-0309161
  • Shabna, P. S., & Sankar, N. (2016). Numerical analysis of shallow tunnels in soft ground using Plaxis2D. Int J Sci Eng Res, 7(4), 161–166. https://www.ijser.org/researchpaper/NUMERICAL-ANALYSIS-OF-SHALLOW-TUNNELS-IN-SOFT-GROUND-USING-PLAXIS2D.pdf
  • Shi, J., Zhang, X., Chen, Y., & Chen, L. (2018). Numerical parametric study of countermeasures to alleviate basement excavation effects on an existing tunnel. Tunnelling and Underground Space Technology, 72, 145–153. https://doi.org/10.1016/j.tust.2017.11.030
  • Standing, J. R., Potts, D. M., Vollum, R., Burland, J. B., Tsiampousi, A., & Afshan, S. (2015). Investigating the effect of tunneling on existing tunnels. Underground Design and Construction Conference, IOM3 Hong Kong Branch, 301–3012.
  • Talebinejad, A., Chakeri, H., & Moosavi, M. (2014). Investigation of surface and subsurface displacements due to multiple tunnels excavation in urban area. Arabian Journal of Geosciences, 7(9), 3913–3923. https://doi.org/10.1007/s12517-013-1056-5
  • Zhang, N., Zhu, X., & Ren, Y. (2019). Analysis and study on crack characteristics of highway tunnel lining. Civil Engineering Journal, 5(5), 1119–1123. https://doi.org/10.28991/cej-2019-03091316