9,583
Views
16
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

A review on enhancements of PMMA Denture Base Material with Different Nano-Fillers

, , ORCID Icon & | (Reviewing editor)
Article: 1875968 | Received 29 Oct 2020, Accepted 18 Dec 2020, Published online: 24 Jan 2021

References

  • Abdel‑ Karim, U. M., & El‑ Refaie, S. (2019). Synthesis of zirconia, organic and hybrid nanofibers for reinforcement of polymethyl methacrylate denture base: Evaluation of flexural strength and modulus, fracture toughness and impact strength. Tanta Dental Journal, 16, 12–25. https://doi.org/10.4103/tdj.tdj_23_18
  • Abdulhamed, A. N., & Mohammed, A. M. (2010). Evaluation of thermal conductivity of alumina reinforced heat cure acrylic resin and some other properties. Journal of Baghdad College of Dentistry, 22, 1–7. https://www.semanticscholar.org/paper/Evaluation-of-thermal-conductivity-of-alumina-heat-Ali/98006cfbab6ac8a80509d4223fcf1f35cd138561?p2df
  • Abdulkareem, M. M., & Hatim, N. A. (2015). Evaluation the biological effect of adding aluminum oxide, silver nanoparticles into microwave treated PMMA powder. International Journal of Enhanced Research in Science Technology & Engineering, 4, 172–178. https://www.semanticscholar.org/paper/Evaluation-the-biological-effect-of-adding-Aluminum-Abdulkareem-Hatim/493cdf2ec23c3478c9129bd6551b9771ec088a60
  • Acosta-Torres, L. S., Mendieta, I., Nuñez-Anita, R. E., Cajero-Juárez, M., & Castaño, V. M. (2012). Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. International Journal of Nanomedicine, 7, 1–10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435119/
  • Adhikari, R., & Michler, G. H. (2009). Polymer nanocomposites characterization by microscopy. Polymer Reviews, 49(3), 141–180. https://doi.org/10.1080/15583720903048094
  • Ahmed, M. A., & Ebrahim, M. I. (2014). Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World Journal of Nano Science and Engineering, 4(2), 50–57. https://doi.org/10.4236/wjnse.2014.42008
  • Ahmed, M. A., El-Shennawy, M., Althomali, Y. M., & Omar, A. A. (2016). Effect of titanium dioxide nano particles incorporation on mechanical and physical properties on two different types of acrylic resin denture base. World Journal of Nano Science and Engineering, 6(3), 111–1119. https://doi.org/10.4236/wjnse.2016.63011
  • Al-Harbi, F. A., Abdel-Halim, M. S., Gad, M. M., Fouda, S. M., Baba, N. Z., AlRumaih, H. S., & Akhtar, S. (2019). Effect of nanodiamond addition on flexural strength, impact strength, and surface roughness of pmma denture base. Journal of Prosthodontics, 28(1), 417–425. https://doi.org/10.1111/jopr.12969
  • Alhareb, A. O. Akil HBM and Ahmad ZAB.(2015). Poly (methyl methacrylate) denture base composites enhancement by various combinations of nitrile butadiene rubber/treated ceramic fillers”. Journal of Thermoplastic Composite Materials, 30(8), 1069-1090. https://journals.sagepub.com/doi/abs/10.1177/0892705715616856
  • Alhareb, A. O., & Ahmad, Z. A. (2011). Effect of Al2O3/ZrO2 reinforcement on the mechanical properties of PMMA denture base. Journal of Reinforced Plastics and Composites, 30(1), 1–8. https://doi.org/10.1177/0731684410379511
  • Alhareb, A. O., Akil, H. M., & Ahmad, Z. A. (2015). Mechanical properties of PMMA denture base reinforced by nitrile rubber particles with Al2O3/YSZ fillers. Procedia Manufacturing, 2, 301–306. https://doi.org/10.1016/j.promfg.2015.07.053
  • Alhareb, A. O., Akil, H. M., & Ahmad, Z. A. (2016). Influence of Al2O3/Y-TSZ mixture as filler loading on the radiopacity of PMMA denture base composites. Procedia Chemistry, 19, 646–650. https://doi.org/10.1016/j.proche.2016.03.065
  • Alnamel, H. A., & Mudhaffer, M. (2014). The effect of silicon dioxide nano-fillers reinforcement on some properties of heat-cure polymethylmethacrylate denture base material. Journal of Baghdad College of Dentistry, 26(1), 32–36. https://doi.org/10.12816/0015142
  • Al-Rais, R. Y., Al-Nakkash, W. A., & Al-Bakri, A. K. (2005). Filler reinforced acrylic denture base material. part 2- effect of water sorption on dimensional changes and transverse strength. Journal of Baghdad College of Dentistry, 17, 6–10. https://www.semanticscholar.org/paper/Filler-reinforced-acrylic-denture-base-material.-2-Widad-Rais/950fbf27f10fccac805a7eb8410a50dc4ed1f3e2?p2df
  • Alwan, S. A., & Alameer, S. S. (2015). The effect of the addition of silanized nano titania fillers on some physical and mechanical properties of heat cured acrylic denture base materials. Journal of Baghdad College of Dentistry, 27(1), 86–91. https://doi.org/10.12816/0015269
  • Anusavice, J. K. (2003). Phillip’s science of dental materials. WB Saunders.
  • Anusavice, K. J. (2003). Phillip’s science of dental materials (11th ed.). Saunders: Elsevier Inc..
  • Arora, N., Jain, V., Chawla, A., & Mathur, V. P. (2011). Effect of addition of sapphire (Aluminum oxide) or silver fillers on the flexural strength, thermal diffusivity and water sorption of heat-polymerized acrylic resins. International Journal of Prosthodontics and Restorative Dentistry, 1(1), 21–27. https://doi.org/10.5005/jp-journals-10019-1004
  • Arora, P., Singh, S. P., & Arora, V. (2015). Effect of alumina addition on properties of polymethylmethacrylate – A comprehensive review. International Journal of Biotech Trends and Technology, 9, 1–7. https://www.semanticscholar.org/paper/Effect-of-Alumina-Addition-on-Properties-of-Poly-A-Arora-Singh/ab1f0075bfd7a20efb58c3d78e54dba9bc396ca5
  • Asar, N. V., Albayrak, H., Korkmaz, T., & Turkyilmaz, I. (2013). Influence of various metal oxides on mechanical and physical properties of heat-cured polymethylmethacrylate denture base resins. The Journal of Advanced Prosthodontics, 5(3), 241–247. https://doi.org/10.4047/jap.2013.5.3.241
  • Asopa, V., Suresh, S., Khandelwal, M., Sharma, V., Asopa, S. S., & Kairal, L. S. (2015). A comparative evaluation of properties of zirconia reinforced high-impact acrylic resin with that of high-impact acrylic resin. The Saudi Journal for Dental Research, 6(2), 146–151. https://doi.org/10.1016/j.sjdr.2015.02.003
  • Ayad, N. M., Dawi, M. F., & Fatah, A. A. (2008). Effect of reinforcement of high-impact acrylic resin with micro-Zirconia on some physical and mechanical properties. Revista De Clínica E Pesquisa Odontológica, 4(3), 145–151. http://dx.doi.org/10.7213/aor.v4i3.23218
  • Aziz, H. K. (2018). TiO2-nanofillers effects on some properties of highly- impact resin using different processing techniques. The Open Dentistry Journal, 12(1), 202–212. https://doi.org/10.2174/1874210601812010202
  • Balos, S., Pilic, B., Markovic, D., Pavlicevic, J., & Luzanin, O. (2014). Polymethylmethacrylate nanocomposites with low silica addition. The Journal of Prosthetic Dentistry, 111(4), 327–334. https://doi.org/10.1016/j.prosdent.2013.06.021
  • Basima, M. A., & Aljafery, A. M. A. (2015). Effect of addition ZrO2-Al2O3 nanoparticles mixture on some properties and denture base adaptation of heat cured acrylic resin denture base material. Journal of Baghdad College of Dentistry, 27(3), 15–21. https://doi.org/10.12816/0015028
  • Bayindir, F., Kurklu, D., & Yanikoglu, N. D. (2012). The effect of staining solutions on the color stability of provisional prosthodontic materials. Journal of Dentistry, 40(2), e41–e46. https://doi.org/10.1016/j.jdent.2012.07.014
  • Bian, Y. M., Zhang, X. Y., Zhu, B. S., Yu, W. Q., Ruan, D. P., & Min, M. (2007). Influence of different amount of silane coupling agent on the flexural strength of PMMA/nanometer ZrO2 composites. Shanghai Kou Qiang Yi Xue, 16(3), 319–323. PMID: 17660924
  • Casemiro, L. A., Gomes Martins, C. H., Pires-de-souza Fde, C., & Panzeri, H. (2007). Antimicrobial and mechanical properties of acrylic resins with incorporated silver–zinc zeolite – Part I. Gerodontology, 25(3), 187–194. https://doi.org/10.1111/j.1741-2358.2007.00198.x
  • Cevik, P., & Yildirim-Bicer, A. Z. 2016. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. Journal of Prosthodontics : Official Journal of the American College of Prosthodontists, (Nov), 29. Epub. https://doi.org/10.1111/jopr.12573
  • Cevik, P., & Yildirim-Bicer, A. Z. (2016). The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. Journal of Prosthodontics, 27(8), 1–8. https://doi.org/10.1111/jopr.12573
  • Chaijareenont, P., Takahashi, H., Nishiyama, N., & Arksornnukit, M. (2012). Effect of different amounts of 3-methacryloxypropyltrimethoxysilane on the flexural properties and wear resistance of alumina reinforced PMMA. Dental Materials Journal, 31(4), 623–628. https://doi.org/10.4012/dmj.2012-056
  • Chatterjee, A., & Mishra, S., Rheological, thermal and mechanical properties of nano-calcium carbonate (CaCO3)/poly (methyl methacrylate) (PMMA) core-shell nanoparticles reinforced polypropylene (PP) composites, Accepted June 12, 2012.
  • Chen, S., & Liang, W. (2004). Effects of fillers on fiber reinforced acrylic denture base resins. Mid-Taiwan Journal of Medicine, 9(4), 203–210. https://doi.org/10.6558/MTJM.2004.9(4).2
  • Chladek, G., Pakieła, K., Pakieła, W., Z˙mudzki, J., Adamiak, M., & Krawczyk, C. (2019). Effect of antibacterial silver-releasing filler on the physicochemical properties of poly (methyl methacrylate) denture base material. Materials, 12(24), 1–24. https://doi.org/10.3390/ma12244146
  • Cierech, M., Kolenda, A., Grudniak, A. M., Wojnarowicz, J., Woźniak, B., Gołaś, M., Swoboda-Kopeć, E., Łojkowski, W., & Mierzwińska-Nastalska, E. (2016). Significance of polymethylmethacrylate (PMMA) modification by zinc oxide nanoparticles for fungal biofilm formation. International Journal of Pharmaceutics, 510(1), 323–335. https://doi.org/10.1016/j.ijpharm.2016.06.052
  • Cierech, M., Wojnarowicz, J., Szmigiel, D., Bączkowski, B. O. H. D. A. N., Grudniak, A. M., Wolska, K. I., Łojkowski, W., & Mierzwińska-Nastalska, E. L. Ż. B. I. E. T. A. (2016). Preparation and characterization of ZnOPMMA resin nanocomposites for denture bases. Acta of Bioengineering and Biomechanics, 18(2), 31–41. https://doi.org/10.5277/ABB-00232-2014-04
  • Cooper, S., Visser, S., Hergenrother, R., & Lamba, N. (2004). Polymers. In B. Ratner, A. Hoffman, & F. Schoen (Eds.), Biomaterials science: an introduction to materials in medicine (2nd ed., pp. 67–80). Elsevier Academic Press.
  • Da Silva, L. H., Feitosa, S. A., Valera, M. C., de Araujo, M. A., & Tango, R. N. (2012). Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology, 29(2), 1019–1023. https://doi.org/10.1111/j.1741-2358.2011.00604.x
  • DeArmitt, C., & Rothon, R. (2011). Dispersants and coupling agents. In M. Kutz (Ed.), Applied plastics engineering handbook: Processing and materials (pp. 441–454). Elsevier.
  • Ellakwa, A. E., Morsy, M. A., & El-Sheikh, A. M. (2008). Effect of aluminum oxide addition on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. Journal of Prosthodontics, 17(6), 439–444. https://doi.org/10.1111/j.1532-849X.2008.00318.x
  • Elmadani, A. A., Radović, I., Tomić, N. Z., Petrović, M., Stojanović, D. B., Jančić Heinemann, R., & Radojević, V. (2019). Hybrid denture acrylic composites with nanozirconia and electrospun polystyrenefibers. Plos One, 4(12), e0226528. https://doi.org/10.1371/journal.pone.0226528
  • Elshereksi, N. W., Ghazali, M. J., Muchtar, A., & Azhari, C. H. (2014). Perspectives for Titanium-derived fillers usage on denture base composite construction: A review article. Advances in Materials Science and Engineering, 1, 1–14. https://doi.org/10.1155/2014/746252
  • Elshereksi, N. W., Mohamed, S. H., Arifin, A., & Mohd Ishak, Z. A. (2009). Effect of filler incorporation on the fracture toughness properties of denture base poly (methyl methacrylate). Journal of Physical Sciences, 20(2), 1–12.
  • Elshereksi, N. W., Mohamed, S. M., Arifin, Z., & Mohd Ishak, Z. A. (2014). Thermal characterization of poly (methyl methacrylate) filled with barium titanate as denture base material. Journal of Physical Sciences, 25(2), 15–27.
  • Franklin, P., Wood, D. J., & Bubb, N. L. (2005). Reinforcement of poly (methyl methacrylate) denture base with glass flake. Dental Materials, 21(4), 365–370. https://doi.org/10.1016/j.dental.2004.07.002
  • Gad, M., ArRejaie, A. S., Abdel-Halim, M. S., & Rahoma, A. (2016). The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. International Journal of Dentistry, 2016, 7094056. https://doi.org/10.1155/2016/7094056
  • Gad, M. M., Fouda, S. M., Al-Harbi, F., N¨ap¨ankangas, A., . R., & Raustia, A. (2017). PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition. International Journal of Nanomedicine, 12, 3801–3812. https://doi.org/10.2147/IJN.S130722
  • Gad, M. M., Al-Thobity, A. M., Rahoma, A., Abualsaud, R., Al-Harbi, F. A., & Akhtar, S. (2019). Reinforcement of PMMA denture base material with a mixture of zro2 nanoparticles and glass fibers. International Journal of Dentistry, 2019, 1–11. https://doi.org/10.1155/2019/2489393
  • Ghafari, T., Hamedi-Rad, F., & Ezzati, B. (2014). Does addition of silver nanoparticles to denture base resin increase its thermal conductivity? Journal of Dental Sciences, 32, 139–144.
  • Ghaffari, T., Hamedi-rad, F., & Ezzati, B. (2014). In Vitro comparison of compressive and tensile strengths of acrylic resins reinforced by silver nanoparticles at 2% and 0.2% concentrations. Journal of Dental Research, Dental Clinics, Dental Prospects, 8(4), 204–209. https://doi.org/10.5681/joddd.2014.037
  • Goyal, S. (2006). Silanes: chemistry and applications. The Journal of Indian Prosthodontic Society, 6(1), 14–18. https://doi.org/10.4103/0972-4052.25876
  • Guo, G., Fan, Y., Zhang, J. F., Hagan, J. L., & Xu, X. (2012). Novel dental composites reinforced with zirconia- silica ceramic nanofibers. Dental Materials, 28(4), 360–368. https://doi.org/10.1016/j.dental.2011.11.006
  • Hajian, M., Koohmareh, G. A., & Mostaghasi, A. (2011). Investigation of the effects of titanate as coupling agent and some inorganic nanoparticles as fillers on mechanical properties and morphology of soft PVC. International Journal of Polymer Science, 2011, 1–9. https://doi.org/10.1155/2011/238619
  • Hamedi-Rad, F., Ghaffari, T., Rezaii, F., & Ramazani, A. (2014). Effect of nanosilver on thermal and mechanical properties of acrylic base complete dentures. Journal of Dentistry (Tehran, Iran), 11(5), 495–505.  PMCID: PMC4290768
  • Hameed, H. K., & Abdul Rahman, H. (2015). The effect of addition nano particle ZrO2 on some properties of autoclave processed heat cures acrylic denture base material. Journal of Baghdad College of Dentistry, 27(1), 32–39. https://doi.org/10.12816/0015262
  • Hamouda, I. M., & Beyari, M. M. (2014). Addition of glass fibers and titanium dioxide nanoparticles to the acrylic resin denture base material: Comparative study with the conventional and high-impact types. Oral Health and Dental Management, 13(1), 107–112.
  • Han, Z., Zhu, B., Chen, R., Huang, Z., Zhu, C., & Zhang, X. (2015). Effect of silver- supported materials on the mechanical and antibacterial properties of reinforced acrylic resin composites. Materials & Design (1980-2015), 65, 1245–1252. https://doi.org/10.1016/j.matdes.2014.10.023
  • Hari Prasad, A., & Kalavathy, M. H. S. (2011). Effect of glass fiber and silane treated glass fiber reinforcement on impact strength of maxillary complete denture. Ann Essen Dental, 4(4), 7–12. https://doi.org/10.5368/aedj.2011.3.4.1.2
  • Harini, P.,Mohamed, K., & Padmanabhan, T.V.(2014).Effect of titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: An in vitro study.Indian Journal of Dental Research : Official Publication of Indian Society for Dental Research,25(4),459–463.https://doi.org/10.4103/0970-9290.142531
  • Hooshmand, T., Matinlinna, J. P., Keshvad, A., Eskandarion, S., & Zamani, F. (2013). Bond strength of a dental leucite-based glass ceramic to a resin cement using different silane coupling agents. Journal of the Mechanical Behavior of Biomedical Materials, 17, 327–332. https://doi.org/10.1016/j.jmbbm.2012.08.020
  • Ibrahim, R. A. (2015). The effect of adding single walled carbon nanotube with different concentrations on mechanical properties of heat-cure acrylic denture base material. Journal of Baghdad College of Dentistry, 27(3), 28–32. https://doi.org/10.12816/0015031
  • Jagger, D. C., Harrison, A., & Jandt, K. D. (1999). The reinforcement of dentures. Journal of Oral Rehabilitation, 26(3), 185–194. https://doi.org/10.1046/j.1365-2842.1999.00375.x
  • Jasim, B. S., & Ismail, I. J. (2014). The effect of silanized alumina nano-fillers addition on some physical and mechanical properties of heat cured polymethylmethacrylate denture base material. Journal of Baghdad College of Dentistry, 26(2), 18–23. https://doi.org/10.12816/0015190
  • Jordan, J., . K., Jacob, K. I., Tannenbaum, R., Sharaf, M. A., & Jasiuk, I. (2005). Experimental trends in polymer nanocomposites—a review. Materials Science and Engineering: A, 393(1–2), 1–11. https://doi.org/10.1016/j.msea.2004.09.044
  • Kamil, A. S. (2018). Hikmet Jameel Al-Judy, “Effect of addition of silanized silicon carbide nanoparticles on some physical properties of heat cured acrylic denture base material”. Journal of Research in Medical and Dental Science, 6(6), 86–95.  www.jrmds.in eISSN No.2347-2367: pISSN No.2347-2545
  • Kamonkhantikul, K., Arksornnukit, M., & Takahashi, H. (2017). Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. International Journal of Nanomedicine, 12(2017), 2353–2360. https://doi.org/10.2147/IJN.S132116
  • Karadi, R. H., & Basima, M. A. (2017). Effect of modified nanohydroxyapatite fillers addition on some properties of heat cured acrylic denture base materials. Journal of Baghdad College of Dentistry, 29(2), 49–54. https://doi.org/10.12816/0038749
  • Karthick, R., Sirisha, P., & Sankar, M. R. (2014). Mechanical and tribological properties of PMMA-sea shell based biocomposite for dental application. Procedia Materials Science, 6, 1989–2000. https://doi.org/10.1016/j.mspro.2014.07.234
  • Khan, H., Raza, M., & Khan, T. A. (2020). Comparison of flexural strength of Zinc nanoparticles reinforced resin with conventional heat cure acrylic resin. Pakistan Oral & Dental Journal, 40(1), 51–54.
  • Kim, K.-I., Kim, D.-A., Patel, K. D., Shin, U. S., Kim, H.-W., Lee, J.-H., & Lee, H.-H., Carbon nanotube incorporation in PMMA to prevent microbial adhesion, scientific reports, 2019, 1–11. Springer Nature
  • Kuhn, K. (2005). What is bone cement? In S. Breusch & H. Malchau (Eds.), The well-cemented total hip arthroplasty: theory and practice (pp. 52–60). Springer Medizin.
  • Kul, E., Aladağ, L. İ., & Yeşildal, R. (2016). Evaluation of thermal conductivity and flexural strength properties of poly (methyl methacrylate denture) base material reinforced with different fillers. The Journal of Prosthetic Dentistry, 116(5), 803–810. https://doi.org/10.1016/j.prosdent.2016.03.006
  • Li, Z., Sun, J., Lan, J., & Qingguo, Q. (2014). Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology, 28(2), 1–8. https://doi.org/10.1111/ger.12142
  • Lien, W., & Vandewalle, K. S. (2010). Physical properties of a new siloranebased restorative system. Dental Materials : Official Publication of the Academy of Dental Materials, 26(4), 337–344. https://doi.org/10.1016/j.dental.2009.12.004
  • Lin, S., Cai, Q., Ji, J., Sui, G., Yu, Y., Yang, X., Ma, Q., Wei, Y., & Deng, X. (2008). Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation. Composites Science and Technology, 68(15–16), 3322–3329. https://doi.org/10.1016/j.compscitech.2008.08.033
  • Mahmood, W. S. (2015). The effect of incorporating carbon nanotubes on impact, transverse strength, hardness, and roughness to high-impact denture base material. Journal of Baghdad College of Dentistry, 27(1), 96–99. https://doi.org/10.12816/0015271
  • Mahross, H. Z., & Baroudi, K. (2015). Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material. European Journal of Dentistry, 9(2), 207–212. https://doi.org/10.4103/1305-7456.156821
  • Mangal, U., Kim, J.-Y., Seo, J.-Y., Kwon, J.-S., & Choi, S.-H. (2019). Novel poly (methyl methacrylate) containing nanodiamond to improve the mechanical properties and fungal resistance. Materials, 12(20)1–17. https://doi.org/10.3390/ma12203438
  • Matinlinna, J. P., Lassila, L. V. J., Özcan, M., Yli-Urpo, A., & Vallittu, P. K. (2004). An introduction to silanes and their clinical applications in dentistry. The International Journal of Prosthodontics, 17(2), 155–164. PMID: 15119865
  • Mohammed, D., & Mudhaffar, M. (2012). Effect of modified zirconium oxide nano-fillers addition on some properties of heat cure acrylic denture base material. Journal of Baghdad College of Dentistry, 24(4), 1–7.
  • Mohammed, M. G., Ahmed, R., Ahmad, M., & Aws, S. A. (2016). Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. International Journal of Nanomedicine, 11, 5633–5643. https://doi.org/10.2147/IJN.S120054
  • Monte, S. J. (2002). Neoalkoxy titanate and zirconate coupling agent additives in thermoplastics. Polymers and Polymer Composites, 10(2), 121–172. https://doi.org/10.1177/096739110201000202
  • Monteiro, D. R., Gorup, L. F., Takamiya, A. S., de Camargo, E. R., Filho, A. C., & Barbosa, D. B. (2012). Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. Journal of Prosthodontics, 21(1), 7–15. https://doi.org/10.1111/j.1532-849X.2011.00772.x
  • Muklif, O. R., & Ismail, I. J. (2015). Studying the effect of addition a composite of silanized nano- Al2O3 and plasma treated polypropylene fibers on some physical and mechanical properties of heat cured PMMA denture base material. Journal of Baghdad College of Dentistry, 27(3), 22–27. https://doi.org/10.12816/0015029
  • Murakami, N., Wakabayashi, N., Matsushima, R., Kishida, A., & Igarashi, Y. (2013). Effect of high-pressure polymerization on mechanical properties of PMMA denture base resin. Journal of the Mechanical Behavior of Biomedical Materials, 20, 98–104. https://doi.org/10.1016/j.jmbbm.2012.12.011
  • Nagao, D., Kinoshita, T., Watanabe, A., & Konno, M. (2011). Fabrication of highly refractive, transparent BaTiO3/poly (methyl methacrylate) composite films with high permittivities. Polymer International, 60(8), 1180–1184. https://doi.org/10.1002/pi.3057
  • Naji, S. A., Behroozibakhsh, M., Sadat, T., Kashi, J., Eslami, H., Masaeli, R., Mahgoli, H., Tahriri, M., Lahiji, M. G., & Rakhshan, V. (2018). Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA). The Journal of Advanced Prosthodontics, 10(2), 113–121. https://doi.org/10.4047/jap.2018.10.2.113
  • Naji, S. A., Sadat, T., Kashi, J., Pourhajibagher, M., Behroozibakhsh, M., Masaeli, R., & Bahador, A. (2018). Evaluation of antimicrobial properties of conventional poly(methyl methacrylate) denture base resin materials containing hydrothermally synthesised anatase TiO2 nanotubes against cariogenic bacteria and candida albicans. Iranian Journal of Pharmaceutical Research, 17(2), 161–172. PMID: 31011350
  • Nam, K. Y., Lee, C. H., & Lee, C. J. (2012). Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology, 29(2), 413–419. https://doi.org/10.1111/j.1741–2358.2011.00489.x
  • Navidfar, A., Azdast, T., & Karimzad, G. A. Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. (2016). Journal of Applied Polymer Science, 133(31), 1–9. Article ID 43738. https://doi.org/10.1002/app.43738
  • Nejatian, T., Johnson, A., & Noort, R. V. (2006). Reinforcement of denture base resin. Advances in Science and Technology, 49, 124–129. https://doi.org/10.4028/www.scientific.net/AST.49.124
  • Nidal Wanis, E., Mariyam, G., Andanastuti, M., & AZHARI, C. H. (2017). Review of titanate coupling agents and their application for dental composite fabrication. Dental Materials Journal, 36(5), 539–552. https://doi.org/10.4012/dmj.2016-014
  • Oei, J. D., Zhao, W. W., Chu, L., DeSilva, M. N., Ghimire, A., Rawls, H. R., & Whang, K. (2012). Antimicrobial acrylic materials with in situ generated silver nanoparticles. Journal of Biomedical Materials Research, 100(2), 409–415. https://doi.org/10.1002/jbm.b.31963
  • Oyar, P., Sana, F. A., Nasseri, B., & Durkan, R. (2018). Effect of green gold nanoparticles synthesized with plant on the flexural strength of heat- polymerized acrylic resin. Nigerian Journal of Clinical Practice, 21(10), 1291–1295. https://doi.org/10.4103/njcp.njcp_388_17
  • Palitsch, A., Hannig, M., Ferger, P., & Balkenhol, M. (2012). Bonding of acrylic denture teeth to MMA/PMMA and light-curing denture base materials: The role of conditioning liquids. Journal of Dentistry, 40(3), 210–221. https://doi.org/10.1016/j.jdent.2011.12.010
  • Pan, Y., Fengwei, L., Xu, D., Jiang, X., Yu, H., & Zhu, M. (2013). Novel acrylic resin denture base with enhanced mechanical properties by the incorporation of PMMA-modified hydroxyapatite. Progress in Natural Science: Materials International, 23(1), 89–93. https://doi.org/10.1016/j.pnsc.2013.01.016
  • Preshaw, P. M., Walls, A. W. G., Jakubovics, N. S., Moynihan, P. J., Jepson, N. J. A., & Loewy, Z. (2011). Association of removable partial denture use with oral and systemic health. Journal of Dentistry, 39(11), 711–719. https://doi.org/10.1016/j.jdent.2011.08.018
  • Qasim, S. B., Al Kheraif, A., & Ramakrishaniah, R. (2012). An investigation into the impact and flexural strength of light cure denture resin reinforced with carbon nanotubes. World Applied Sciences Journal, 18(6), 808–812. https://doi.org/10.5829/idosi.wasj.2012.18.06.942
  • Rebecca Lilda, G., Rupesh, P. L., Unni Pympallil, B. S., Salagundi, P. N., N. T, P., & Poonacha, V. (2020). A comparative evaluation of the impact and flexural strengths of high- impact acrylic resin reinforced with silane zirconium dioxide and titanium dioxide nanoparticles and its hybrid combination - an invitro study. International Journal of Advanced Research, 8(2), 781–791. https://doi.org/10.21474/IJAR01/10509
  • Reglero Ruiz, J. A., Saiz-Arroyo, C., Dumon, M., Rodríguez-Perez, M. A., & Gonzalez, L. (2011). Production, cellular structure andthermal conductivity of microcellular (methyl methacrylate) - (butyl acrylate)-(methyl methacrylate) triblock copolymers. Polymer International, 60(1), 146–152. https://doi.org/10.1002/pi.2931
  • Rongrong, C., Zhihui, H., Zhuoli, H., Junu, K. A. R. K. I., Chenxin, W., Bangshang, Z., & Xiuyin, Z. (2017). Antibacterial activity, cytotoxicity and mechanical behavior of nano- enhanced denture base resin with different kinds of inorganic antibacterial agents. Dental Materials Journal, 36(6), 693–699. https://doi.org/10.4012/dmj.2016-301
  • Rubio, E., Almaral, J., Ramı́rez-Bon, R., Castano, V., & Rodrı́guez, V. (2005). Organic-inorganic hybrid coating (poly (methyl methacrylate)/monodisperse silica). Optical Materials, 27(7), 1266–1269. https://doi.org/10.1016/j.optmat.2004.11.022
  • Safarabadia, M., Khansarib, N. M., & Rezaeic, A. (2014). An experimental investigation of HA/Al2O3 nanoparticles on mechanical properties of restoration materials. Engineering Solid Mechanics, 2(3), 173–182. https://doi.org/10.5267/j.esm.2014.4.006
  • Safi, I. N. (2014). Evaluation the effect of nano-fillers (TiO2, AL2O3, SiO2) addition on glass transition temperature, E-moudulus and coefficient of thermal expansion of acrylic denture base material. Journal of Baghdad College of Dentistry, 26(1), 37–41. https://doi.org/10.12816/0015162
  • Safi, I. N., Hassanen, K. A., & Ali, N. A. (2012). Assessment of zirconium oxide nano-fillers incorporation and silanation on impact, tensile strength and color alteration of heat polymerized acrylic resin. Journal of Baghdad College of Dentistry, 24(2), 36–42.
  • Safi, I. N., & Moudhaffar, M. (2011). evaluation the effect of modified Nano filler addition on some properties of the heat cure acrylic risen denture base material. A master thesis, Department of Prosthodontics, College of Dentistry, University of Baghdad.
  • Sakaguchi, R. L., & Powers, J. M. (2012). Craig’s restorative dental materials (pp. 163–176). Elsevier Health Sciences.
  • Salahuddin, N., El‐Kemary, M., & Ibrahim, E. (2018). Reinforcement of polymethyl methacrylate denture base resin with ZnO nanostructures. Applied Ceramic Technology, 15(2), 448–459.
  • Salih, S. I., Oleiwi, J. K., & Hamad, Q. A. (2015). Investigation of fatigue and compression strength for the PMMA reinforced by different system for denture applications. Journal of Biomedical Materials Research, 3(1), 5–13. https://doi.org/10.11648/j.ijbmr.20150301.13
  • Salman, T. A., & Khalaf, H. A. (2015). The influence of adding of modified ZrO2-TiO2 nanoparticles on certain physical and mechanical properties of heat polymerized acrylic resin. Journal of Baghdad College of Dentistry, 27(3), 33–39. https://doi.org/10.12816/0015032
  • Santhanam Vikram, N., & Chander, G. (2020). Effect of zinc oxide nanoparticles on the flexural strength of polymethylmethacrylate denture base resin. European Oral Research, 54(1), 31–35. https://doi.org/10.26650/eor.20200063
  • Sawada, T., Sawada, T., Kumasaka, T., Hamada, N., Shibata, T., Nonami, T., & Kimoto, K. (2014). Self-cleaning effects of acrylic resin containing fluoridated apatite-coated titanium dioxide. Gerodontology, 31(1), 68–75. https://doi.org/10.1111/ger.12052
  • Sehajpal, S. B., & Sood, V. K. (1989). Effect of metal fillers on some physical properties of acrylic resin. The Journal of Prosthetic Dentistry, 61(6), 746–751. https://doi.org/10.1016/S0022-3913(89)80055-1
  • Shi, J.-M., Bao, Y.-Z., Huang, Z.-M., & Weng, Z.-X. (2004). Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization. Journal of Zhejiang University. Science, 5(6), 709–713. https://doi.org/10.1631/jzus.2004.0709
  • Shibata, T., Hamada, N., Kimoto, K., SAWADA, T., SAWADA, T., KUMADA, H., UMEMOTO, T., & TOYODA, M. (2007). Antifungal effect of acrylic resin containing apatite-coated TiO2 photocatalyst. Dental Materials Journal, 26(3), 437–444. https://doi.org/10.4012/dmj.26.437
  • Shtilman, M. I. (2003). Polymeric Biomaterials. VSP BV.
  • Suganya, S., Ahila, S. C., Kumar, B. M., & Kumar, M. V. (2014). Evaluation and comparison of anti-Candida effect of heat cure polymethylmethacrylate resin enforced with silver nanoparticles and conventional heat cure resins: an in vitro study. Indian Journal of Dental Research, 25(2), 204–207. https://doi.org/10.4103/0970-9290.135923
  • Tandra, E., Wahyuningtyas, E., & Sugiatno, E. (2018). The effect of nanoparticles TiO2 on the flexural strength of acrylic resin denture plate. Padjadjaran Journal of Dentistry, 30(1), 35–40. https://doi.org/10.24198/pjd.vol30no1.16110
  • Tham, W. L., Chow, W. S., & Mohd Ishak, Z. A. (2010). Simulated body fluid and water absorption effects on poly (methyl methacrylate)/hydroxyapatite denture base composites. Express Polymer Letters, 4(9), 517–528. https://doi.org/10.3144/expresspolymlett.2010.66
  • Vojdani, M., Bagheri, R., & Khaledi, A. R. (2012). Effects of aluminum oxide addition on the flexural strength, surface hardness, and roughness of heat-polymerized acrylic resin. Journal of Dental Sciences, 7(3), 238–244. https://doi.org/10.1016/j.jds.2012.05.008
  • Wady, A. F., Machado, A. L., Zucolotto, V., Zamperini, C. A., Berni, E., & Vergani, C. E. (2012). Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. Journal of Applied Microbiology, 112(6), 1163–1172. https://doi.org/10.1111/j.1365-2672.2012.05293.x
  • Wang, R., Kayacan, R., & Küçükeşmen, C. (2015). Nanotubes/polymethyl methacrylate composite resins as denture base materials. In M. Zhang, R. R. Naik, & L. Dai (Eds.), Carbon nanomaterials for biomedical applications (1st ed., pp. 227–240). Springer International Publishing.
  • Wang, R., Tao, J., Yu, B., & Dai, L. (2014). Characterization of multiwalled carbon nanotube-polymethyl- methacrylate composite resins as denture base materials. The Journal of Prosthetic Dentistry, 111(4), 318–326. https://doi.org/10.1016/j.prosdent.2013.07.017
  • Wei, Y., Wang, X., Tang, Q., Guo, M., & Zhao, J. (2014). Reinforcement of denture base PMMA with ZrO2 nanotubes. Journal of the Mechanical Behavior of Biomedical Materials, 32, 192–197. https://doi.org/10.1016/j.jmbbm.2014.01.003
  • Yadav, N. S., & Elkawash, H. (2011). Flexural strength of denture base resin reinforced with aluminum oxide and processed by different processing techniques. Journal of Advanced Medical and Dental Sciences Research, 2(1), 33–36.
  • Yadav, P., Mittal, R., Sood, V. K., & Garg, R. (2012). Effect of incorporation of silane-treated silver and aluminum microparticles on strength and thermal conductivity of PMMA. Journal of Prosthodontics, 21(7), 546–551. https://doi.org/10.1111/j.1532-849X.2012.00873.x
  • Yu, S. H., Lee, Y., Oh, S., Cho, H. W., Oda, Y., & Bae, J. M. (2012). Reinforcing effects of different fibers on denture base resin based on the fiber type, concentration, and combination. Dental Materials Journal, 31(6), 1039–1046. https://doi.org/10.4012/dmj.2012-020
  • Zebarjad, S. M., Amir, Y., Sdrabadi, T. E., Yaghmaei, A., Naderi, B., & Naderi, B. (2011). A study on mechanical properties of PMMA/hydroxyapatite nanocomposite. Engineering, 3(8), 795–801. https://doi.org/10.4236/eng.2011.38096
  • Zhang, M., & Matinlinna, J. P. (2011). E-glass fiber reinforced composites in dental applications. Silicon, 4(1), 73–78. https://doi.org/10.1007/s12633-011-9075-x
  • Zhang, X., Zhang, X., Zhu, B., Lin, K., & Chang, J. (2012). Mechanical and thermal properties of denture PMMA reinforced with silanized aluminum borate whiskers. Dental Materials Journal, 31(6), 903–908. https://doi.org/10.4012/dmj.2012-016
  • Zhang, X. J., Zhang, X. Y., Zhu, B. S., & Qian, C. Effect of nano ZrO2 on flexural strength and surface hardness of polymethylmethacrylate. Shanghai Kou Qiang Yi Xue. 2011; 20(4):358–363.
  • Zhang, X. Y., Wu, W. L., Bian, Y. M., Zhu, B. S., & Yu, W. Q. (2009). The effect of different dispersive methods on flexural strength nano-ZrO2 reinforced denture polymethylmethacrylate. Shanghai Kou Qiang Yi Xue = Shanghai Journal of Stomatology, 18(3), 313–316.
  • Zhang, X. Y., Zhang, X. J., Huang, Z. L., Zhu, B. S., & Chen, R. R. (2014). Hybrid effects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA. Dental Materials Journal, 33(1), 141–146. https://doi.org/10.4012/dmj.2013-054