2,209
Views
3
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Expanded clay aggregates multi-functionality for water purification: Disinfection and adsorption studies

ORCID Icon, , , , & | (Reviewing editor) show all
Article: 1883232 | Received 18 Nov 2020, Accepted 25 Jan 2021, Published online: 12 Feb 2021

References

  • Ajibade, F. O., Akosile, S. I., Oluwatuyi, O. E., Ajibade, T. F., Lasisi, K. H., Adewumi, J. R., … Clay, I. (2019). Bacteria removal efficiency data and properties of Nigerian clay used as a household ceramic water filter. Results in Engineering, 2(April), 100011. https://doi.org/10.1016/j.rineng.2019.100011
  • Alzeyadi, A., Al-Ansari, N., Laue, J., & Alattabi, A. (2019). Study of biomass bottom ash efficiency as phosphate sorbent material. Civil Engineering Journal, 5(11), 2392–19. https://doi.org/10.28991/cej-2019-03091419
  • Annan, E., Agyei-tuffour, B., Bensah, Y. D., Sasu, D., Yaya, A., Onwona-agyeman, B., … Konadu, D. S. (2018). Application of clay ceramics and nanotechnology in water treatment : A review Application of clay ceramics and nanotechnology in water treatment : A review. Cogent Engineering, 00, 1–35. https://doi.org/10.1080/23311916.2018.1476017
  • Asamoah, R. B., Yaya, A., Nbelayim, P., Annan, E., & Onwona-Agyeman, B. (2020). Development and characterization of clay-nanocomposites for water purification. Materials, 13(17), 17. https://doi.org/10.3390/MA13173793
  • Backer, H. (2002). Water Disinfection for International and Wilderness Travelers, 94704(July 2001), 355–364. https://doi.org/10.584838/2002/3403-0010$03.00
  • Bahmanpour, H., Habashi, R., & Hosseini, S. M. (2017). Investigating the Efficiency of Lightweight Expanded Clay Aggregate (LECA) in Wastewater Treatment of Dairy Industry. Anthropogenic Pollution Journal, 1(1), 9–17. https://doi.org/10.22034/apj.2017.1.1.917
  • Dang-I-Auphedeous, Y. (2010). Clay filtration of microbes and fluoride. Master of African University of Abudja (Nigeria). pp54.
  • Fadiran, A. O., Dlamimi, S. C., & Mavuso, A. (2008). A Comparative Study of the Phosphate Levels in Some Surface and Ground Water Bodies of Swaziland.Bulletin of the Chemical Society of Ethiopia,22(2), 197–206. https://doi.org/10.4314/bcse.v22i2.61286
  • Fried, S., Mackie, B., & Nothwehr, E. (2003). Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond. Tillers, 4, 21–24. http://digital.grinnell.edu/ojs/index.php/tillers/article/view/33
  • Gaur, N., Kukreja, A., Yadav, M., & Tiwari, A. (2018). Adsorptive removal of lead and arsenic from aqueous solution using soya bean as a novel biosorbent : Equilibrium isotherm and thermal stability studies. Applied Water Science, 8(4), 1–12. https://doi.org/10.1007/s13201-018-0743-5
  • Gisvold, B., Ödegaard, H., & Föllesdal, M. 2018. Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond, November, 107–114. https://iwaponline.com/wst/article-pdf/41/9/107/427700/107.pdf
  • Goldberg, S. (2002). Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science Society of America Journal, 66(2), https://www.researchgate.net/publication/297366608_Competitive_adsorption_of_arsenate_and_arsenite_on_oxides_and_clay_minerals
  • Gu, S., Kang, X., Wang, L., Lichtfouse, E., Wang, C., Gu, S., … Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater. Environmental Chemistry Letters, 17(2), 629–654. https://doi.org/10.1007/s10311-018-0813-9
  • Habuda-stani, M., & Nuji, M. 2015. Arsenic removal by nanoparticles: A review. Environmental Science and Pollution Research22(11):8094-8123. https://doi.org/10.1007/s11356-015-4307-z
  • Hotez, P. J., Molyneux, D. H., Fenwick, A., Ottesen, E., & Ehrlich Sachs S, S. J. (2006). Incorporating a Rapid-impact Package for Neglected Tropical Diseases with Programs for HIV/AIDS, Tuberculosis, Malaria, 3(5), e102. https://doi.org/10.1371/journal.pmed.0030102
  • Ihekweme, G. O., Shondo, J. N., Orisekeh, K. I., Kalu-uka, G. M., Nwuzor, I. C., & Onwualu, P. A. (2020). Characterization of certain Nigerian clay minerals for water purification and other industrial applications. Heliyon, 6(December2019), e03783. https://doi.org/10.1016/j.heliyon.2020.e03783
  • Johansson, L. (1997). The use of leca (light expanded clay aggregates) for the removal of phosphorus from wastewater. Water Science and Technology, 35(5), 87–93. https://doi.org/10.1016/S0273-1223(97)00056-5
  • Kalhori, E. M., Al-Musawi, T. J., Ghahramani, E., & Hossein Kazemian, M. Z. (2017). Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles Studies on the kinetic, isotherm, and effects of environmental parameters.pdf.
  • Khyade, V. B., & Swaminathan, M. S. (2016). Water : The Pacemaker for Life of Earth. World Scientific News, 44, 93–125. www.worldscienti ficnews.com
  • Knobeloch, L., Anderson, H., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108.(August). https://doi.org/10.1289/ehp.00108675
  • Liu, L., Johnson, H. L., Cousens, S., Perin, J., Scott, S., Lawn, J. E., Rudan, I., Campbell, H., Cibulskis, R., Li, M., & Mathers C, B. R. 2012. Child Health Epidemiology Reference Group of WHO and UNICEF. Global, Regional, and National Causes of Child Mortality: An Updated Systematic Analysis for 2010 with Time Trends since 2000. The Lancet, 379(9832), 2151-2161.
  • Londono, S. C., & Williams, L. B. (2016). Unraveling the antibacterial mode of action of a clay from the Colombian Amazon. Environmental Geochemistry and Health, 38(2), 363–379. https://doi.org/10.1007/s10653-015-9723-y
  • Łopata, M., Czerniejewski, P., Wiśniewski, G., & Czerniawski, R. (2017). The Use of Expanded Clay Aggregate for the Pretreatment of Surface Waters on the Example of a Tributary of Lake Klasztorne Górne in Strzelce Krajenskie. Limnological Review, 17(1), 3–9. https://doi.org/10.1515/limre-2017-0001
  • Luo, J., Luo, X., Crittenden, J., Qu, J., Bai, Y., Peng, Y., & Li, J. (2015). Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environmental Science & Technology, 49(18), 11115–11124. https://doi.org/10.1021/acs.est.5b02903
  • Mehmood, A., Hayat, R., Wasim, M., & Akhtar, M. S. (2009). Mechanisms of Arsenic Adsorption in Calcareous Soils. Journal Agriculture Biological science, 1(1), 59–65.
  • Melin, E. S., & Odegaard, H. (1999). Biofiltration of Ozonated Humid Water in Expanded Clay Aggregate Filters. Water science and technology, 40(9), 165–172. https://doi.org/10.1016/S0273-1223(99)00653-8
  • Nath, G. M., & Goldberg, J. B. (2003). Light Expanded Clay aggregates for Phosphorus Removal.U.S. Patent No. 6,627,083. Washington, DC: U.S. Patent and Trademark Office. (pp. 12).
  • Noori, M., Kazemian, H., Ghahramani, E., & Amrane, A. (2014). Defluoridation of water via light weight expanded clay aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. Journal of the Taiwan Institute of Chemical Engineers, 49, 19–26. https://doi.org/10.1016/j.jtice.2014.02.009
  • Prüss-Üstün, A., Bos, R., Gore, F., & Bartram, J. (2008). Safer water, better health: Costs, benefits and sustainability of interventions to protect and promote health. World Health Organization, Geneva.
  • Rezvani, P., & Mehdi, M. (2018). On using clay and nanoclay ceramic granules in reducing lead, arsenic, nitrate, and turbidity from water. Applied Water Science, 8(5), 1–6. https://doi.org/10.1007/s13201-018-0779-6
  • Shiklomanov, I. (1993). Water in crisis: A guide to the world’s fresh water resources. H. G. Peter (Ed.). USA: Oxford University Press.
  • Taffarel, S. R., & Rubio, J. (2009). On the removal of Mn(II) ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng, 22(4), 336–343. https://doi.org/10.1016/j.mineng.2008.09.007
  • The National Academics. (1980). Drinking Water and Health, Volume 2. Safe Drinking Water Committee, Board on Toxicology and Environmental Health Hazards, Assembly of Life Sciences; ISBN: 0-309-55406-3, 408. http://www.nap.edu/catalog/1904.html
  • U.S.EPA (Environmental Protection Agency). (2011). Exposure Factors Handbook: 2011 Edition (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011.
  • United Nations. (2017). World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. Department of Economic and Social Affairs, United Nations News.
  • Unuabonah, E. I., Ugwuja, C. G., Omorogie, M. O., Adewuyi, A., & Oladoja, N. A. (2018). Clays for efficient disinfection of bacteria in water. Applied Clay Science, 151(2018), 211–223. https://doi.org/10.1016/j.clay.2017.10.005
  • USEPA. (2017). IRIS assessment plan for nitrate and nitrite (scoping and problem formulation materials). U.S. Environmental Protection Agency. EPA/635/R-17/331.
  • World Health Organization. (2009). Neglected tropical diseases, hidden successes, emerging opportunities. World health Organization. https://apps.who.int/irish/handle/10665/44214
  • World Health Organization. (2016). WHO Collaborating Center for Research Training and Eradication of Dracunculiasis, Guinea Worm Wrap Up #238, 2016. Centers for Disease Control and Prevention (CGH): Atlanta.
  • World Health Organization. (2020). Water-related diseases: Prepared for World Water Day. Reviewed by staff and experts in Family and Community Health Unit (FCH), and the Water, Sanitation and Health Unit (WSH), World Health Organization (WHO), Geneva.
  • World Health Organization /United Nations Children's Fund. (2017). Progress on Drinking Water, Sanitation and Hygiene: 2017 Updates and SDG Baseline, Geneva. World HealthOrganization (WHO) and the United Nations Children’s Fund (UNICEF), 2017. Licence: CC BY-NC-SA 3.0 IGO..
  • World Health Organization/United Nations Children's Fund. (2001). Global Water Supply and Sanitation Assessment 2000 Report.
  • World Health Organization. (2011). Nitrate and nitrite in drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality.
  • Yaghi, N., & Hartikainen, H. (2014). Effect of Phosphate on the Sorption of Arsenite onto Aluminum – or Iron – Oxide Coated Light Expanded Clay Aggregate (LECA)., 3(4), 11–17.
  • Zhang, X., Qian, J., & Pan, B. 2015. Fabrication of Novel Magnetic Nanoparticles for Efficient and Simultaneous Removal of Multiple Pollutants from Water Fabrication of Novel Magnetic Nanoparticles for Adsorption of Heavy Metals. Environmental Science & Technology, 201650(2), 881-889. https://doi.org/10.1021/acs.est.5b04539