1,519
Views
8
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Is order creation through disorder in additive manufacturing possible?

ORCID Icon & | (Reviewing editor)
Article: 1889110 | Received 14 Nov 2020, Accepted 30 Dec 2020, Published online: 07 Mar 2021

References

  • Abadal, S., Cui, T.-J., Low, T., & Georgiou, J. (2020). Programmable metamaterials for software-defined electromagnetic control: circuits, systems, and architectures. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10(1), 6–31. https://doi.org/10.1109/JETCAS.2020.2976165
  • Abelmann, L., Hageman, T., Löthman, P., Mastrangeli, M., & Elwenspoek, M. (2020). Three-dimensional self-assembly using dipolar interaction. Science Advances, 6(19), 2375–2548. doi: 10.1126/sciadv.aba2007
  • Alba, M. (DARPA). The promise and peril of programmable matter. https://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/14967/The-Promise-and-Peril-of-Programmable-Matter.aspx, 2017.
  • Alben, S., Gorodetsky, A. A., Kim, D., & Deegan, R. D. (2019). Semi-implicit methods for the dynamics of elastic sheets. Journal of Computational Physics, 399, 108952. https://doi.org/10.1016/j.jcp.2019.108952
  • Alexander, C. (1964). Notes on the synthesis of form (pp. 216p). Harvard University Press.
  • Alvaro, M. (2004). Auto-organisation, autonomie et identité. Revue Internationale De Philosophie, 228(2), 135–150. http://www.jstor.org/stable/23955621
  • André, J. C. (2017). From additive manufacturing to 3D/4D printing - volume 1: from the first concept to the present applications; volume 2: improvement of the present technologies and constraints; volume 3: breakdown innovations: programmable matter; 4D printing and bio-printing. ISTE/Wiley Ed. – Londres – UK.
  • André, J. C. (2020). Unpublished results – Under progress.
  • André, J. C., Le Méhauté, A., & De Witte, O. (1984). Dispositif pour réaliser un modèle de pièce industrielle. French Patent N°, 84 (11), 241–257. 07.1984
  • Arroyo, M. A., Cannon, S., Daymude, J. J., Randall, D., & Richa, A. W. A stochastic approach to shortcut bridging in programmable matter 2018, https://arxiv.org/pdf/1709.02425.pdf
  • Ashby, W. R. (1962). Principles of the self-organizing systems. In H. Von Foerster and G. W. Zopf, Jr. (Eds.), principles of self-organization (pp. 255–278). Pergamon Press.
  • Atlan, H. (2006). L’organisation biologique et la théorie de l’information. Seuil Ed.
  • Atlan, H. (2011). Le vivant post-génomique ou qu’est-ce que l’auto-organisation ? O. Jacob Ed.
  • Aubin, J. P., & Lesne, A. Analyse morphologique et mutationnelle: Des outils pour la morphogenèse, 2016, https://www.lptmc.jussieu.fr/user/lesne/chapitre17.pdf
  • Bandari, V. K., Nan, Y., Karnaushenko, D., Hong, Y., Sun, B., Striggow, F., Karnaushenko, D. D., Becker, C., Faghih, M., Medina-Sánchez, M., Zhu, F., & Schmidt, O. G. (2020). A flexible microsystem capable of controlled motion and actuation by wireless power transfer. Nature Electronics, 3, 172–180. https://doi.org/10.1038/s41928-020-0384-1
  • Baquiast, J. P. La morphogénèse http://www.automatesintelligents.com/echanges/2004/jan/morphogenese.html, 2004.
  • Bar-Yam, Y. (2003). Dynamics of complex systems. Westview Press Ed.
  • Beal, J., Lowell, J., Mozeika, A., & Usbeck, B. K. (2011) “Using morphogenetic models to develop spatial structures” 2011 fifth IEEE conference on self-adaptive and self-organizing systems workshops – Ann Arbor – USA, 12488451 - https://ieeexplore.ieee.org/document/6114579
  • Beatty, K. M., & Jackson, K. A. (2000). Monte Carlo modeling of silicon crystal growth. Journal of Crystal Growth, 211(1-4), 13–17. https://doi.org/10.1016/S0022-0248(99)00836-2
  • Bende, N. (2017). Non-euclidean shells: a study of growth-induced fabrication and mechanical multi-stability. Doctoral Dissertations – 1023 – Amherst University.
  • Bhalla, N., Ipparthi, D., Klemp, E., Dorigo, M., & Geometrical, A. (2015). Approach to the incompatible substructure problem in parallel self-assembly. International Conference on Parallel Problem Solving from Nature PPSN 2014: Parallel Problem Solving from Nature – PPSN XIII, 751–760.
  • Bita, I., Yang, J. K. W., Jung, Y. S., Ross, C. A., Thomas, E. L., & Berggren, K. K. (2008). Grapho-epitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science, 321, 939–943. DOI: 10.1126/science.1159352
  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. In SFI studies in the science of complexity. Oxford University Press Ed.
  • Bonabeau, E., & Théraulaz, G. L’intelligence en essaim, 2000 https://www.researchgate.net/profile/Eric_Bonabeau/publication/230660873_L’intelligence_en_essaim/links/53ff53f00cf2194bc29a4abd.pdf
  • Bowden, N., Terfort, A., Carbeck, J., & Whitesides, G. M. (1997). Assembly of mesoscale objects into ordered two-dimensional arrays. Science, 276, 233–235. DOI: 10.1126/science.276.5310.233
  • Bowyer, A. A. (1983). Programmer’s geometry - Butterworth-Heinemann ed. London : Butterworths.
  • Bruter, C. P. (1976). cited by Le Moigne, J.L. La théorie du système général; théorie de la modélisation. 1994 PUF Ed. – Paris.
  • Cademartiri, L., & Bishop, K. J. M. (2015). Programmable self-assembly. Nature Materials, 14, 2–9. https://doi.org/10.1038/nmat4184
  • Callon, M., & Lacoste, A. (2011). Défendre l’innovation responsable. Debating Innovation, 1(1), 5–18.
  • Campbell, D. T. (1974). Downward causation in hierarchically organised biological system. In F. Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology (pp. 179–186). University of California Press. Ed.
  • Campbell, T. A., . C., Tibbits, S., & Banning, G. (2014). The programmable world. Scientific American, 311, 60–65. doi: 10.1007/978-1-349-01892-5_11
  • Charrier, R. L’intelligence en essaim sous l’angle des systèmes complexes: Etude d’un système multi-agent réactif à base d’itérations logistiques couplées, 2009
  • Chossat, P. Les mathématiques de la morphogénèse: L’autre grande contribution d’Alan Turing (I) http://images.math.cnrs.fr/Les-mathematiques-de-la.html, 2015.
  • Cicero. De natura deorum. Les belles lettres. Ed. – Paris; cited by Levy-Leblond, J.M. (2020) Le tube à essais – Effervesciences. Seuil Ed. – Paris – France:2002.
  • CNRS. Jean-Pierre Sauvage, un Nobel pour les machines moléculaires. https://lejournal.cnrs.fr/articles/jean-pierre-sauvage-un-nobel-pour-les-machines-moleculaires, 2016.
  • Collectif, S. M. I. (1995). L’adéquation fonctionnelle comme limite des systèmes organisateurs. In G. Théraulaz (Ed.), Evolution et organisation; hasard et contraintes dans la genèse des formes collectives (pp. 58–67). Journées de Rochebrune et ENST Ed. – Paris.
  • Collin, J. P., Dietrich-Buchecker, R., & Sauvage, J. P. (2001). Vers des machines et des moteurs moléculaires. Actualité Chimique, 27–32.
  • Cuellar, J. S., Smit, G., Zadpoor, A. A., & Breedveld, P. (2018). Ten guidelines for the design of non-assembly mechanisms: The case of 3D-printed prosthetic hands. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 232(9), 962–971. https://doi.org/10.1177/0954411918794734
  • D’Arcy Thompson, W. (1917). On growth and form. Cambridge University Press Ed.
  • da Silva, E., C. Introduction aux systèmes dynamiques et chaos, https://cel.archives-ouvertes.fr/cel-00556972, 2011.
  • Dalmedico, A. D., Chabert, J. L., & Chemla, J. L. (1992). Chaos et déterminisme. Inédit Science Ed.
  • Danzo, A., & André, J. C. (2020). Que peut apporter une modélisation mathématique à la maitrise du bio-printing ? Entropie, 20-1(1), 32p. DOI :10.21494/ISTE.OP.2020.0530
  • Daymude, J. J., Gmyr, R., Richa, A. W., Scheideler, C., & Strothmann, T. Improved leader election for self-organizing programmable matter. Springer International Publishing. https://arxiv.org/pdf/1701.03616.pdf, 2017.
  • de Beer, M., van der Laan, H. L., Cole, M. A., Whelan, R. J., Burns, M. A., & Scott, T. F. (2019). Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Science Advances, 5(1), 8723. DOI: 10.1126/sciadv.aau8723
  • Dejeu, J., Gauthier, M., Rougeot, P., & Boireau, W. (2009). Adhesion forces controlled by chemical self-assembly and pH - Application to robotic micro-handling. Applied Material & Interfaces, 1, 1966–1977. https://doi.org/10.1021/am900343w
  • Delignières, D. Systèmes dynamiques et morphogénèse. http://didier.delignieres.perso.sfr.fr/Supports-doc/systemes_dynamiques_et_morphogenese.pdf, 2015.
  • Derakhshandeh, Z., Gmirh, R., Richa, A. W., Scheideler, C., & Strothmann, T. (2016). Universal shape formation for programmable matter (p. 11–13). CA, USA. SPAA’16, July
  • Di Marzo Serugendo, G., Gleizes, M. P., & Karageorgos, A. (2006). Self-organization and emergence in mas; an overview. Informatica, 30, 45–54.
  • Doursat, R., Sayama, H., & Michel, O. A. (2013). A review of morphogenetic engineering. Natural Computing, 12(4), 517–535. https://doi.org/10.1007/s11047-013-9398-1
  • Drew, E. (2010). Symposium on opportunities and challenges in the emerging field of synthetic biology. OECD and Royal Society Ed.
  • Dureuil, A. Des nano-moteurs pour des courses de nano-voitures. https://www.info-chimie.fr/des-nano-moteurs-pour-des-courses-de-nano-voitures,46270, 2013.
  • Eastes, R. E., Darriga, C., Bataille, X., & Monfeuillard, H. (2009). Des vers dans les jardins chimiques pour (re)mettre la science en culture. Alliage, 64, 73–89.
  • Fiévet, C. Robots en réseau. http://www.internetactu.net/2004/04/13/robots-en-rseau/, 2004.
  • Firat, Z., Ferrante, E., Gillet, Y., & Tuci, E. (2020). On self-organized aggregation dynamics in swarms of robots with informed robots. Neural Computing & Applications, 32, 13825–13841. https://doi.org/10.1007/s00521-020-04791-0.
  • Fromm, J. (2004). The emergence of complexity. Kassel Univ. Press Ed. – Kassel – Germany.
  • Ge, Q., Qi, H. J., & Dunn, M. L. (2016). Active materials by four-dimension printing. Applied Physics Letters, 103, 131901. https://doi.org/10.1063/1.4819837
  • Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., & Dunn, M. L. (2016). Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 6(1), 31110. https://doi.org/10.1038/srep31110
  • Gilpin, K., Knaian, A., & Rus, D. (2012). Robot pebbles: One centimeter modules for programmable matter trough self-disassembly. doi: 10.1109/ROBOT.2010.5509817
  • Giltinan, J., Diller, E., & Sitti, M. (2016). Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper. Lab on a Chip, 16(22), 4445–4457. https://doi.org/10.1039/C6LC00981F
  • Gleick, J. (2008). La théorie du chaos. Champ Sciences Ed.
  • Goldstein, S. C., Campbell, J. D., & Mowry, T. C. (2005). Programmable matter. Computing, 38(6804), 99–101. doi: 10.1038/35036656
  • Goodsell, D. S., & Olson, A. J. (2000). Structural symmetry and protein function. Annual Review of Biophysics and Biomolecular Structures, 29, 105–153.
  • Granger, G. G. (1995). Le probable. le possible et le virtuel. O. Jacob Ed. – Paris.
  • Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chez bellicosi - termes natalensis et cubitermes sp - la théorie de la stigmergie: Essai d’interprétation des termites constructeurs. Insectes sociaux, 4, 41–83.
  • Greenhall, J., & Raeymaekers, B. (2017). 3D printing macroscale engineered materials using ultrasound directed self-assembly and stereo-lithography. Advanced Materials Technology, 2(9), 1700122. https://doi.org/10.1002/admt.201700122
  • Grzelczak, M., Vermant, J., Furst, E. M., & Liz-Marza, L. M. (2010). Directed self-assembly of nanoparticles. ACS Nano, 4(7), 3591–3605. https://doi.org/10.1021/nn100869j
  • Guespin-Michel, J. La révolution du complexe - Sciences, dialectique et rationalité. 2016a, http://www.revolutionducomplexe.fr/images/downloads/revolutionducomplexeguespin.pdf
  • Guespin-Michel, J. La révolution du complexe - Sciences, dialectique et rationalité, 2016b http://www.revolutionducomplexe.fr/images/downloads/revolutionducomplexeguespin.pdf
  • Guièze, G. (1983). Les énoncés de Mind and machines comme image de l’Objet technique. In A. R. Anderson (Ed.), Pensée et machine (pp. 6–33). Champ Vallon Ed. – Paris.
  • Haken, H. (2008). Self-organization. Scholarpedia, 3, 1401.
  • Hamel, C. M., Roach, D. J., Long, K. N., Demoly, F., Dunn, M. L., & Qi, H. J. (2019). Machine-learning based design of active composite structures for 4D printing. Smart Materials and Structures, 28(6), 065005. https://doi.org/10.1088/1361-665X/ab1439
  • Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., & DNA, Y. H. (2011). Origami with complex curvatures in three-dimensional space. Science, 332, 342–346. DOI: 10.1126/science.1202998
  • Harrington, K. I. S. (2016). A circuit basis for morphogenesis. Theoretical Computer Science, 633, 28–36. https://doi.org/10.1016/j.tcs.2015.07.002
  • Haudin, F., Brau, F., & De Wit, A. La chimie génératrice de forme: Végétation métallique et jardins chimiques, 2018. https://www.openscience.fr/La-chimie-generatrice-de-forme-vegetation-metallique-et-jardins-chimiques
  • Hausmann, M. K., Rühs, P. A., Siqueira, G., Läuger, J., Libanori, R., Zimmermann, T., & Studart, A. R. (2018). Dynamics of cellulose nanocrystal alignment during 3D Printing. ACS Nano, 12(7), 6926–6937. https://doi.org/10.1021/acsnano.8b02366
  • Hawking, S. (1989). Une brève histoire du temps. Flammarion Ed. – Paris – France.
  • Henderson, L. J. (1913). The fitness of the environment (pp. 272p).
  • Henderson, L. J. (1917). The order of nature. Harvard University Press, Cambridge.
  • Heylighen, F. Order from noise. Principia cybernetica web (principia cybernetica, Brussels - Belgium), http://cleamc11.vub.ac.be/REFERPCP.html, 2000.
  • Hiller, J. D., & Lipson, H. (2009). Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyping Journal, 15(2), 137–149. https://doi.org/10.1108/13552540910943441
  • Hornyak, T. “particle” robots work together to perform tasks https://www.scientificamerican.com/article/particle-robots-work-together-to-perform-tasks/, 2019.
  • Jakab, K., Neagu, A., Mironov, V., Markwald, R. R., & Forgacs, G. (2004). Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Science – USA, 101, 2864–2869.
  • Jin, Y., & Meng, Y. (2012). Morphogenetic robotics: a new paradigm for designing self-organizing. Self-Reconfigurable and Self-Adaptive Robots.
  • Jones, R. O., Iravani, P., & Bowyer, A. Rapid manufacturing of functional engineering components, 2012, https://purehost.bath.ac.uk/ws/portalfiles/portal/216470/RapidManufacturingFunctionalComponents.pdf
  • Joshi, S. D., & Davidson, L. A. (2012). Epithelial machines of morphogenesis and their potential application in organ assembly and tissue engineering. Biomechanical Modeling – Mechano-biology, 11(8), 1109–1121. doi:10.1007/s10237-012-0423-6 
  • Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: From theory to pheno-types. Nature Rev. Genetics, 6, 451–464. https://doi.org/10.1038/nrg1615
  • Kancir, P. (2018). Méthodologie de conception de système multi-robots: De la simulation à la démonstration. Thèse de l’Université de Lorient.
  • Kelly, B. E., Bhattacharya, I., Heidari, H., Shusteff, M., Spadaccini, C. M., & Taylor, H. K. (2019). Volumetric additive manufacturing via tomographic reconstruction. Science, 363(6431), 1075–1079.
  • Kenyon, H. S. Programmable matter research solidifies. 2009 https://www.afcea.org/content/?q=node/1964
  • Kheifetz, M. L. From information and additive technologies to self-reproduction of machines and organisms. 2018 https://cyberleninka.ru/article/n/from-information-and-additive-technologies-to-self-reproduction-of-machines-and-organisms
  • Knaian, A. N. Electro-permanent Magnetic Connectors and Actuators: Devices and Their Application in Programmable Matter. MIT PhD – Boston – 2010.
  • Koch, A. J., & Meinhardt, H. (1994). Biological pattern formation. Review of Modern Physics, 66, 1481–1507.
  • Kotov, N. A. (2017). Self-assembly of inorganic nanoparticles: Ab ovo. Journal Exploring the Frontiers of Science, 119, 66008. https://doi.org/10.1209/0295-5075/119/66008
  • Kowalski, B. A., Guin, T. C., Auguste, A. D., Godman, N. P., & White, T. J. (2017). Pixelated polymers: directed self assembly of liquid crystalline polymer networks. ACS Macro Letters, 6(4), 436–441. https://doi.org/10.1021/acsmacrolett.7b00116.
  • Krishnan, M., Tolley, M. T., Lipson, H., & Erickson, D. (2009). Hydrodynamically tunable affinities for fluidic assembly. Langmuir, 25(6), 3769–3774. https://doi.org/10.1021/la803517f
  • La boîte verte. Des recherches de forme pour des essaims robotiques collaboratifs. 2020, https://www.laboiteverte.fr/recherches-de-forme-essaims-robotiques-collaboratifs/
  • Labrot, V., Hochedez, A., Cluzeau, P., & De Kepper, P. (2006). Spatiotemporal dynamics of the Landolt reaction in an open spatial reactor with conical geometry. J. Phys. Chem, A110, 14043–14049. https://doi.org/10.1021/jp064728z
  • Landau, S., Moriel, A., Livne, A., Zheng, M. H., Bouchbinder, E., & Levenberg, S. (2018). Tissue-level mechano-sensitivity: predicting and controlling the orientation of 3D vascular networks. Nano Letters, 18(12), 7698–7708. https://doi.org/10.1021/acs.nanolett.8b03373
  • Langer, J. S. (1980). Instabilities and pattern formation in crystal growth. Review of Modern Physics, 52, 1–28. https://doi.org/10.1103/RevModPhys.52.1
  • Laurent, J., Blin, G., Chatelain, F., Vanneaux, V., Fuchs, A., Larghero, J., & Théry, M. (2017). Convergence of micro-engineering and cellular self-organization towards functional tissue manufacturing. Nature Biomedical Engineering, 1, 939–956. https://doi.org/10.1038/s41551-017-0166-x
  • Le Guyader, H. (2008). Morphogenèse, structures physiques et évolution biologique. Comptes Rendus Chimie, 11, 186–191.
  • Le Moigne, J. L. (1994). La théorie des systèmes - PUF Ed. Presses Universitaires de France - PUF.
  • Lebedev, S. (2012). Order from Disorder. Nature Physics, 8, 785–786. https://doi.org/10.1038/nphys2448
  • Leduc, S. (1910). Théorie physico-chimique de la vie et générations spontanées.
  • Leduc, S. (1912). La biologie synthétique: étude de biophysique. Poinat Ed. – Paris – France.
  • Lesne, A. Turing et la morphogenèse: Les “structures de Turing. https://www.lptmc.jussieu.fr/user/lesne/Turing-preprint.pdf, 2012.
  • Lesne, A. Une conjonction de réactions chimiques et de diffusion: Alan Turing, les motifs et les structures du vivant. 2013, https://interstices.info/jcms/int_71868/alan-turing-les-motifs-et-les-structures-du-vivant
  • Lévy-Leblond, J. M. (2020). Le tube à essais – Effervesciences. Seuil Ed. – Paris – France.
  • Li, W., Gauci, M., & Gross, R. (2016). Turing learning: A metric-free approach to inferring behavior and its application to swarms. Swarm Intelligence, 10, 211–243. https://doi.org/10.1007/s11721-016-0126-1
  • Lin, S., Xie, Y. M., Li, Q., Huang, X., Zhang, Z., Ma, G., & Zhou, S. (2018). Shell buckling: From morphogenesis of soft matter to prospective applications. Bioinspiration & Biomimetics, 13(5), 051001. https://doi.org/10.1088/1748-3190/aacdd1
  • Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. Nature, 406, 974–978. https://doi.org/10.1038/35023115
  • Liu, S., Zhang, L., Bai, G. D., & Cui, T. J. (2019). Flexible controls of broadband electromagnetic wavefronts with a mechanically programmable metamaterial. Scientific Reports, 9(1), 1809. https://doi.org/10.1038/s41598-018-38328-2
  • MacCune, M., Shafiee, A., Forgacs, G., & Kosztin, I. (2014). Predictive modeling of post bio-printing structure formation. Soft Matter, 10, 1790–1800.
  • MacLennan, B. J. (2010). Morphogenesis as a model for nano communication. Nano Communication Networks Journal, 1(3), 199–208. https://doi.org/10.1016/j.nancom.2010.09.007
  • MacLennan, B. J. (2012). Embodied computation: applying the physics of computation to artificial morphogenesis. Parallel Processing Letters, 22, 1240013.
  • MacLennan, D. J. (2015). The morphogenetic path to programmable matter. Proc. IEEE, 103, 1226–1232. doi: 10.1109/JPROC.2015.2425394
  • Maeda, S., Hara, Y., Nakamaru, S., Nakagawa, H., & Hashimoto, S. Chemical robots. 2011, https://www.intechopen.com/books/on-biomimetics/chemical-robots
  • Manning, K. B., Wyatt, N., Hughes, L., Cook, A., Giron, N. H., Martinez, E., Campbell, C. G., & Celina, M. C. Self-assembly assisted additive manufacturing: direct ink write 3d printing of epoxy-amine thermosets. Sandia National Laboratories, 2019, https://www.osti.gov/pages/servlets/purl/1487420
  • Marshall, B. L’intelligence d’un essaim. 2020a, https://www.rs-online.com/designspark/the-intelligence-of-a-swarm-fr
  • Marshall, B. L’intelligence d’un essaim. https://www.rs-online.com/designspark/the-intelligence-of-a-swarm-fr, 2020b.
  • Martin, I., Malda, J., & Rivron, N. (2019). Organs by design: Can bio-printing meet self-organization? Current Opinion in Organ Transplantation, 24, 562–567.
  • Mathews, N., Christensen, A. L., O’Grady, R., Mondada, F., & Dorigo, M. (2017). Mergeable nervous systems for robots. Nature Communications, 8, 439. https://doi.org/10.1038/s41467-017-00109-2
  • Medina-Sanchez, M., Xu, H., & Schmidt, O. G. (2018). Micro- and nano-motors: The new generation of drug carriers. Therapeutic Delivery, 9, 303–316.
  • Michener, C. D. (1974). The social behavior of bees: a comparative study. Harvard University Press Ed. – Harvard – USA.
  • Mirzaali, M. J., de la Nava, H., Gunashekar, A., Nouri-Goushki, D., Veeger, M., Grossman, R. P. E., Angeloni, Q., Ghatkesar, L., Fratila-Apachitei, M. K., Ruffoni, L. E., Doubrovski, D., & Zadpoor, E. L. (2020). A.A. Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing. Composite Structures, 237, 111867.
  • Mirzaali, M. J., de la Nava, N., Gunashekar, G., Nouri-Goushki, N.-G., Doubrovski, D., & Zadpoor, Z. (2019). Fracture behavior of bio-inspired functionally graded soft–hard composites made by multi-material 3D printing: the case of colinear cracks. Materials, 12(17), 2735. https://doi.org/10.3390/ma12172735
  • Monteiro, M. J. (2018). Order from disorder through dissipation of free energy. Nature Nanotechnology, 13, 771–772. https://doi.org/10.1038/s41565-018-0220-1
  • Morange, M. (2012). Les secrets du vivant; contre la pensée unique en biologie. La découverte Ed.
  • Moreno, A. (2004). Auto-organisation, autonomie et identité. Revue Internationale De Philosophie, 58(228), 135–150.
  • Mugnier, L. (2008). Introduction aux problèmes inverses: Application à l’imagerie optique à haute résolution en astronomie. In P. Léna (Ed.), Des données à l’objet: Le problème inverse. EDP Sciences/CNRS Ed.
  • Munro, C., Vue, Z., Behringer, R. R., & Dunn, C. W. (2019). Morphology and development of the Portuguese man of war, physalia physalis. Scientific Reports, 9, 15522. https://doi.org/10.1038/s41598-019-51842-1
  • Murata, S., & Kurokawa, H. (2007). Self-reconfigurable robots: Shape-changing cellular robots can exceed conventional robot flexibility. IEEE Robotics & Automation Magazine, 71–78.
  • Neagu, A., Kosztin, I., Jakab, K., Barz, B., Neagu, M., & Jamison, R. (2006). Computational modeling of tissue self-assembly. Modern Physics Letters B, 20, 1217–1231. https://doi.org/10.1142/S0217984906011724
  • Niendorf, K., & Raeymaekers, B. (2020). Quantifying macro- and microscale alignment of carbon microfibers in polymer-matrix composite materials fabricated using ultrasound directed self-assembly and 3D-printing. Composites. Part A, Applied Science and Manufacturing, 129, 105713. https://doi.org/10.1016/j.compositesa.2019.105713
  • Novotný, P., Wang, H., & Nano-robots, P. M. (2020). Machines squeezed between molecular motors and micro-motors. Chem, 6, 867–884.
  • Okuda, S., Inoue, Y., Eiraku, M., Adachi, T., & Sasai, Y. (2016). Modeling cell apoptosis for simulating three-dimensional multicellular morphogenesis based on a reversible network reconnection framework. Bio-mechanic Modeling & Mechano-biology, 15(4), 805–816. 10.1007/s10237-015-0724-7
  • Ottino, J. M. (2004). Complex systems. American Institute of Chemical Engineers Journal, 49, 292–299.
  • Oxman, R. (2010). Morphogenesis in the theory and methodology of digital tectonics. Journal of the International Association for Shell and Spatial Structures, 51, 195–205.
  • Palacin, S. Approche bottom-up le principe de l’auto-assemblage. 2017, https://www.fun-mooc.fr/c4x/UPSUD/42003/asset/Cours_2-3b.pdf
  • Party-Barwick, S., & Bowyer, A. (1995). Multidimensional set-theoretic feature recognition. Computer-Aided Design, 27, 731–740.
  • Patel, B. B., Walsh, D. J., Kim, D. H., Kwok, J., Lee, B., Guironnet, D., & Diao, Y. (2020). Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Science Advances, 6, 7202.
  • Pinho, A. C., Buga, C. S., & Piedade, A. P. (2020). The chemistry behind 4D printing. Applied Materials Today, 19, 100611. doi: 10.1016/j.apmt.2020.100611
  • Prigogine, I. (1994). Les lois du chaos. Flammarion Ed. – Paris – France.
  • Pritchet, D., Ehmann, K., Cao, J., & Manipulation, H. J. (2020). Localized deposition of particle groups with modulated electric fields. Micro-machines, 11, 226.
  • Prix, V. C. Nobel de Chimie 2016: Les machines moléculaires, 2016, https://culturesciences.chimie.ens.fr/thematiques/chimie-organique/synthese-et-retrosynthese/prix-nobel-de-chimie-2016-les-machines
  • Rajasekharan, A. K., Bordes, R., Sandström, C., Ekh, M., & Hierarchical, A. M. (2017). Heterogeneous bioinspired composites—merging molecular self‐assembly with additive manufacturing. Small, 13, 1700550.
  • Richards, D., Jia, J., Yost, M., Markwald, R., & Mei, Y. (2017). 3D bio-printing for vascularized tissue fabrication. Annals of Biomedical Engineering, 45, 132–147. doi: 10.1007/s10439-016-1653-z
  • Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.https://doi.org/10.1038/nature04586
  • Rothstein, J. (1962). Information and organization as the language of the operational viewpoint. The Philosophy of Science, 29(4), 406–411. https://doi.org/10.1086/287895
  • Rus, D., & Vona, M. (2001). Crystalline robots: Self-reconfiguration with unit-compressible modules. Autonomous Robots, 10, 107–124. https://doi.org/10.1023/A:1026504804984
  • Sanchez, C. Chimie des matériaux hybrids. 2011, https://www.college-de-france.fr/media/clement-sanchez/UPL5460438176618849830_sanchez.pdf
  • Sauvage, J. P. (2017). From chemical topology to molecular machines (nobel lecture). Angewante Chemie, International Edition, 56(37), 11080–11093. https://doi.org/10.1002/anie.201702992
  • Sawyer, E. DNA origami, http://www.nature.com/scitable/blog/bio2.0/dna_origami, 2011.
  • Schwarz, E. (1977). Toward a holistic cybernetics - From science through epistemology to being. Cybernetics and Human Knowing, 4, 1–24.
  • Shalygo, Y. The kinetic basis of morphogenesis. 13th eur. conf. on artificial life - York – UK, 2015, pp. 122–129.
  • Sharkey, A. J. C. (2007). Swarm robotics and minimalism. Connection Science, 19(3), 245–260. https://doi.org/10.1080/09540090701584970
  • Simon, H. A. (2004). Les sciences de l’artificiel. Folio-Essais Ed. – Paris – France.
  • Singh, G., Chan, H., Baskin, A., Gelman, E., Repnin, N., Kràl, P., & Klajn, R. (2014). Self-assembly of magnetite nano-cubes into helical superstructures. Science, 345, 1149–1153. doi: 10.1126/scirobotics.aau9178
  • Skylar-Scott, M. A., Uzel, S. G. M., Nam, L. L., Ahrens, J. H., Truby, R. L., Damaraju, S., & Lewis, J. A. (2019). Bio-manufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Science Advances, 5, 2459.
  • Slavkov, L., Carrillo-Zapata, D., Carranza, N., Diego, X., Jansson, F., Kaandorp, J., Hauert, S., & Sharpe, J. (2018). Morphogenesis in robot swarms. Science Robotics, 3, 9178.
  • Sossou, G., Demoly, F., Belkebir, H., Qi, H. J., Gomes, S., & Montavon, G. (2019a). Design for 4D printing : A voxel-based modeling and simulation of smart materials. Materials & Design, 175, 107798. https://doi.org/10.1016/j.matdes.2019.107798
  • Sossou, G., Demoly, F., Belkebir, H., Qi, H. J., Gomes, S., & Montavon, G. (2019b). Design for 4D printing: modelling and computation of smart materials distribution. Materials & Design, 181, 108074. https://doi.org/10.1016/j.matdes.2019.108074
  • Sowade, E., Blaudeck, T., & Baumann, R. R. (2015). Inkjet printing of colloidal nano-spheres: engineering the evaporation-driven self-assembly process to form defined layer morphologies. Nanoscale Research Letters, 10, 362. https://doi.org/10.1186/s11671-015-1065-2
  • Staune, J. (2015). Les clés du futur; réinventer ensemble la société, l’économie et la science. Plon Ed.
  • Sun, M., Zaman, M. H., & Modeling, A. R. (2017). signaling and cytoskeleton dynamics: Integrated modeling-experimental frameworks in cell migration. WIREs Syst. Biol. Med, 9(1), e1365. doi:10.1002/wsbm.1365
  • Sussan, R. Retour sur la matière programmable; 2014, http://www.internetactu.net/2014/07/11/retour-sur-la-matiere-programmable/
  • Szalai, I., Cuinas, D., Takacs, N., Horvath, J., & De Kepper, P. (2012). Chemical morphogenesis: Recent experimental advances in reaction–diffusion system design and control. Interface Focus, 2, 417–432.
  • Tamay, D. G., Usal, T. D., Alagoz, A. S., Yucel, D., Hasirci, N., & Hasirc, V. (2019). 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 7, 164. https://doi.org/10.3389/fbioe.2019.00164
  • Tan, A. T. L., Beroz, J., Kolle, M., & Hart, A. J. (2018). Direct‐write freeform colloidal assembly. Advanced Materials, 30(4), 1803620. https://doi.org/10.1002/adma.201803620
  • Théraulaz, G., & Bonabeau, E. (1995). Essaims sur réseaux et modélisation des processus de construction collective chez les insectes sociaux. In G. Théraulaz (Ed.), Evolution et organisation; hasard et contraintes dans la genèse des formes collectives (pp. 165–177). Journées de Rochebrune et ENST Ed. – Paris.
  • Thom, R. (1972). Stabilité structurelle et morphogenèse. Ediscience Ed. – Paris – France.
  • Thom, R. (1980). Modèle mathématique de la morphogénèse. Ed. Bourgois, C. – Paris –France.
  • Thom, R. (1983). Paraboles et catastrophes. Flammarion Ed.
  • Thomas, R., Basiosa, V., Eiswirth, M., Kruel, T., & Rossler, O. E. (2004). Hyper-chaos of arbitrary order generated by a single feedback circuit, and the emergence of chaotic walks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 14(3), 699. https://doi.org/10.1063/1.1772551
  • Thomas-Seale, L. E. J., Kirkman-Brown, J. C., Kanagalingam, S., Attallah, M. M., Espino, D. M., & Shepherd, D. E. T. (2019). The analogies between human development and additive manufacture: expanding the definition of design. Cogent Engineering, 6, 1662631. https://doi.org/10.1080/23311916.2019.1662631
  • Thuillier, P. (1980). Le petit savant illustré » Seuil Ed.
  • Tolley, M. T., Krishnan, M., Erickson, D., & Lipson, H. (2008). Dynamically programmable fluidic assembly. Applied Physics Letters, 93(1), 254105. https://doi.org/10.1063/1.3048562
  • Tolley, M. T., Krishnan, M., Lipson, H., & Erickson, D. (2008). Advances towards programmable matter. Twelfth international conference on miniaturized systems for chemistry and life sciences October 12–16 (pp. 653–655). San Diego.
  • Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, 237B(25), 37–72.
  • Vanag, V. K., & Epstein, I. R. (2001). Pattern formation in a tunable medium: The Belousov–Zhabotinsky reaction in an aerosol OT micro-emulsion. Physical Review Letter, 87(22), 228–301. 10.1103/PhysRevLett.87.228301
  • Varela, F. J. (1983). L’auto-organisation: De la physique au politique. Seuil Ed. – Paris – France.
  • Vidal, C., Pagola, A., Bodet, J. M., Hanusse, P., & Bastardie, E. (1986). Etude expérimentale statistique des structures cibles de la réaction de Belousov-Zhabotinsky en régime oscillant. J. Physique, 47, 1999–2010.
  • Vincent, J. F. V., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., & Pahl, A. K. (2006). Bio-mimetics: Its practice and theory. Journal of the Royal Society – Interface, 3(9), 471–482. https://doi.org/10.1098/rsif.2006.0127
  • von Foerster, H. (1960). on self-organizing systems and their environments. in self-organizing systems (pp. 31–50). Yovits and Cameron Ed.
  • von Foerster, H. (1981). Observing Systems. Inter-systems Publications Ed.
  • Wadsworth, P., Nelson, I., Porter, D. L., Raeymaekers, B., & Naleway, S. E. (2020). Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing. Materials & Design, 185(9), 108243. https://doi.org/10.1016/j.matdes.2019.108243
  • Wang, Y., & Sun, Q. (2013). Modeling and simulations of multicellular aggregate self-assembly in bio-fabrication using kinetic Monte Carlo methods. Soft Matter, 9, 2172. https://doi.org/10.1039/C2SM27090K
  • Weil, S. (2020). cited by Lévy-Leblond. J.M. Le tube à essais – Effervesciences. Seuil Ed. – Paris – France.
  • Whitelam, S., & Jack, R. L. (2015). The statistical mechanics of dynamic pathways to self-assembly. Annual Review of Physical Chemistry, 66, 143–163. https://doi.org/10.1146/annurev-physchem-040214-121215
  • Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295(5564), 2418–2421. 10.1126/science.1070821
  • Yadav, R., Naebe, M., Wang, X., & Kandasubramanian, B. (2017). Review on 3D prototyping of damage tolerant interdigitating brick arrays of nacre. Ind. Eng. Chem. Res, 56(38), 10516–10525. https://doi.org/10.1021/acs.iecr.7b01679
  • Yang, Y., Li, X., Chu, M., Sun, H., Jin, J., Yu, K., Wang, Q., Zhou, Q., & Chen, Y. (2019). Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Science Advances, 5(4), eaau9490. doi: 10.1126/sciadv.aau9490
  • Ye, X., Collins, J. E., Kang, Y., Chen, J., Chen, D. T. N., Yodh, A. G., & Murray, C. B. (2010). Morphologically controlled synthesis of colloidal up-conversion nanophosphors and their shape-directed self-assembly. Proceedings of the National Academy of Sciences, 107(52), 22430–22435. https://doi.org/10.1073/pnas.1008958107
  • Yue, X. G., Cao, Y., & McAleer, M. (2015). From disorder to order. Econometric Institute Research Papers.
  • Zahadat, P., Hofstadler, D. N., & Schmickl, T. (2017). Vascular morphogenesis controller: a generative model for developing morphology of artificial structures. GECCO ‘17: Proceedings of the Genetic and Evolutionary Computation Conference, 163–170. http://dx.doi.org/10.1145/3071178.3071247
  • Zenil, H. (2013). Turing patterns with Turing machines: Emergence and low-level structure formation. Nat. Comput, 12, 291–303. doi: 10.1007/s11047-013-9363-z
  • Zentel, R. (2020). Polymer coated semiconducting nanoparticles for hybrid materials. Inorganics, 8(3), 1–21. https://doi.org/10.3390/inorganics8030020
  • Zhu, X., & Yang, H. (2018). Turing instability-driven bio-fabrication of branching tissue structures: a dynamic simulation and analysis based on the reaction–diffusion mechanism. Micro-machines, 9(3), 109. https://doi.org/10.3390/mi9030109