1,591
Views
4
CrossRef citations to date
0
Altmetric
BIOMEDICAL ENGINEERING

An assimilation of TRIZ in dissecting the statistical outcomes of tactile sensitivity, pinch force and endurance among elderly people

, ORCID Icon, ORCID Icon, &
Article: 1891710 | Received 29 Jan 2020, Accepted 13 Feb 2021, Published online: 04 Mar 2021

References

  • Amca, A., Vigouroux, L., Arıtan, S., & Berton, E. (2012). The effect of chalk on the finger–hold friction coefficient in rock climbing. Sports Biomechanics, 11(4), 1–21. https://doi.org/10.1080/14763141.2012.724700
  • Badawy, A., & Alfred, R. (2020). Myoelectric prosthetic hand with a proprioceptive feedback system. Journal of King Saud University - Engineering Sciences, 32(8), 388-395. https://doi.org/10.1016/j.jksues.2019.05.002
  • Bae, J. H., Kang, S. H., Seo, K. M., Kim, D.-K., Shin, H. I., & Shin, H. E. (2015). Relationship between grip and pinch strength and activities of daily living in stroke patients. Annals of Rehabilitation Medicine, 39(5), 752–762. https://doi.org/10.5535/arm.2015.39.5.752
  • Bainbridge, D., Seow, H., Sussman, J., Pond, G., Martelli-Reid, L., Herbert, C., & Evans, W. (2011). Multidisciplinary health care professionals’ perceptions of the use and utility of a symptom assessment system for oncology patients. Journal of Oncology Practice, 7(1), 19–23. https://doi.org/10.1200/JOP.2010.000015
  • Bhardwaj, P., Nayak, S. S., Kiswar, A. M., & Sabapathy, S. R. (2011). Effect of static wrist position on grip strength. Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India, 44(1), 55–58. https://doi.org/10.4103/0970-0358.81440
  • Brown, W. F. (1972). A method for estimating the number of motor units in thenar muscles and the changes in motor unit count with ageing. Journal of Neurology, Neurosurgery, and Psychiatry, 35(6), 845–852. https://doi.org/10.1136/jnnp.35.6.845
  • Burnett, R. A., Laidlaw, D. H., & Enoka, R. M. (2000). Coactivation of the antagonist muscle does not covary with steadiness in old adults. Journal of Applied Physiology, 89(1), 61–71. https://doi.org/10.1152/jappl.2000.89.1.61
  • Canning, C. G., Ada, L., Adams, R., & O’Dwyer, N. J. (2004). Loss of strength contributes more to physical disability after stroke than loss of dexterity. Clinical Rehabilitation, 18(3), 300–308. https://doi.org/10.1191/0269215504cr715oa.
  • Chang, B.-C., Huang, B.-S., Chen, C.-K., & Wang, S.-J. (2007). The pincer chopsticks: The investigation of a new utensil in pinching function. Applied Ergonomics, 38(3), 385–390. https://doi.org/10.1016/j.apergo.2006.03.009
  • Cole, K. J. (1991). Grasp force control in older adults. Journal of Motor Behavior, 23((4),), 251–258. https://doi.org/10.1080/00222895.1991.9942036
  • Department of Statistics Malaysia. (2017). Ageing auguest department of statistics Malaysia. Department of Statistics Malaysia. Retrieved from https://www.dosm.gov.my/v1/
  • Desrosiers, J., Bravo, G., & Hébert, R. (1997). Isometric grip endurance of healthy elderly men and women. Archives of Gerontology and Geriatrics, 24(1), 75–85. https://doi.org/10.1016/S0167-4943(96)00756-X
  • Ding, H., Leino-Arjas, P., Murtomaa, H., Takala, E.-P., & Solovieva, S. (2013). Variation in work tasks in relation to pinch grip strength among middle-aged female dentists. Applied Ergonomics, 44(6), 977–981. https://doi.org/10.1016/j.apergo.2013.03.014
  • Dodds, R. M., Syddall, H. E., Cooper, R., Benzeval, M., Deary, I. J., Dennison, E. M., & Sayer, A. A. (2014). Grip strength across the life course: Normative data from twelve British studies. PloS One, 9(12), e113637–e113637. https://doi.org/10.1371/journal.pone.0113637
  • Duchateau, J., & Hainaut, K. (1990). Effects of immobilization on contractile properties, recruitment and firing rates of human motor units. The Journal of Physiology, 422(1), 55–65. https://doi.org/10.1113/jphysiol.1990.sp017972
  • Ellis, E. A., Bloswick, D. S., Sesek, R. F., Mann, C., Thiese, M. S., & Hegman, K. T. 2004. The effect of pinch grip on upper extremity cumulative trauma disorders in female garment workers. Master of Science Dissertation University of Utah.
  • Enders, L. R., & Jin Seo, N. (2011). Phalanx force magnitude and trajectory deviation increased during power grip with an increased coefficient of friction at the hand–object interface. Journal of Biomechanics, 44(8), 1447–1453. https://doi.org/10.1016/j.jbiomech.2011.03.020
  • Enoka, R. M., Christou, E. A., Hunter, S. K., Kornatz, K. W., Semmler, J. G., Taylor, A. M., & Tracy, B. L. (2003). Mechanisms that contribute to differences in motor performance between young and old adults. Journal of Electromyography and Kinesiology, 13(1), 1–12. https://doi.org/10.1016/S1050-6411(02)00084-6
  • Evans, W. J. (2010). Skeletal muscle loss: Cachexia, sarcopenia, and inactivity. The American Journal of Clinical Nutrition, 91(4), 1123S–1127S. https://doi.org/10.3945/ajcn.2010.28608A
  • Fiatarone, M. A., & Evans, W. J. (1993). 11 the etiology and reversibility of muscle dysfunction in the aged. Journal of Gerontology, 48(Special_Issue), 77–83. https://doi.org/10.1093/geronj/48.Special_Issue.77
  • Fiatarone, M. A., Marks, E. C., Ryan, N. D., Meredith, C. N., Lipsitz, L. A., & Evans, W. J. (1990). High-intensity strength training in nonagenarians: effects on skeletal muscle. JAMA, 263(22), 3029–3034. https://doi.org/10.1001/jama.1990.03440220053029
  • Frontera, W. R., Suh, D., Krivickas, L. S., Hughes, V. A., Goldstein, R., & Roubenoff, R. (2000). Skeletal muscle fiber quality in older men and women. American Journal of Physiology. Cell Physiology, 279(3), C611–618. https://doi.org/10.1152/ajpcell.2000.279.3.C611
  • Fuss, F., & Niegl, G. (2012). The importance of friction between hand and hold in rock climbing. Sports Technology, 5(3–4), 90–99. https://doi.org/10.1080/19346182.2012.755539
  • Harris, J. E., & Eng, J. J. (2007). Paretic upper-limb strength best explains arm activity in people with stroke. Physical Therapy, 87(1), 88-97. https://doi.org/10.2522/ptj.20060065
  • Heath, G. W., Hagberg, J. M., Ehsani, A. A., & Holloszy, J. O. (1981). A physiological comparison of young and older endurance athletes. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 51(3), 634–640. https://doi.org/10.1152/jappl.1981.51.3.634
  • Heffernan, C., & Freivalds, A. (2000). Optimum pinch grips in the handling of dies. Applied Ergonomics, 31(4), 409–414. https://doi.org/10.1016/S0003-6870(99)00064-2
  • Hiramatsu, Y., Kimura, D., Kadota, K., Ito, T., & Kinoshita, H. (2015). Control of precision grip force in lifting and holding of low-mass objects. PlLoS One, 10(9), e0138506. https://doi.org/10.1371/journal.pone.0138506
  • Höppner, H., McIntyre, J., & van der Smagt, P. (2013). Task dependency of grip stiffness—a study of human grip force and grip stiffness dependency during two different tasks with same grip forces. PloS One, 8(12), e80889. https://doi.org/10.1371/journal.pone.0080889
  • Hosken, D. J., Buss, D. L., & Hodgson, D. J. (2018). Beware the F test (or, how to compare variances). Animal Behaviour, 136, 119–126. https://doi.org/10.1016/j.anbehav.2017.12.014
  • Hu, W., Wei, N., Li, Z.-M., & Li, K. (2018). Effects of muscle fatigue on directional coordination of fingertip forces during precision grip. PloS One, 13(12), e0208740. https://doi.org/10.1371/journal.pone.0208740
  • Hyun-Yong, H., Shimada, A., & Kawamura, S. (1996, 22-28 April 1996). Analysis of friction on human fingers and design of artificial fingers. Paper presented at the proceedings of IEEE international conference on robotics and automation. Minneapolis, Minnesota.
  • Jover, J. A., Lajas, C., Leon, L., Carmona, L., Serra, J. A., Reoyo, A., Rodriguez-Rodriguez, L., & Abasolo, L., & for the Acute Physical Disability in the Elderly, G. (2015). Incidence of physical disability related to musculoskeletal disorders in the elderly: results from a primary care–based registry. Arthritis Care & Research, 67(1), 89–93. https://doi.org/10.1002/acr.22420
  • Keller, K., & Engelhardt, M. (2014). Strength and muscle mass loss with aging process. Age and strength loss. Muscles, Ligaments and Tendons Journal, 3(4), 346–350. https://doi.org/10.32098/mltj.04.2013.17
  • Kilbreath, S. L., & Gandevia, S. C. (1994). Limited independent flexion of the thumb and fingers in human subjects. The Journal of Physiology ( Pt 3). 479(3), 487–497. https://doi.org/10.1113/jphysiol.1994.sp020312.
  • Kim, Y., Kim, W.-S., & Yoon, B. (2014). The effect of stroke on motor selectivity for force control in single- and multi-finger force production tasks. NeuroRehabilitation, 34(3), 429–435. https://doi.org/10.3233/NRE-141050
  • Kirkendall, D. T., & Garrett, W. E. (1998). The effects of aging and training on skeletal muscle. The American Journal of Sports Medicine, 26(4), 598–602. https://doi.org/10.1177/03635465980260042401
  • Ko, Y.-T., Lu, -C.-C., & Lee, L.-H. (2016). A contradiction-based approach for innovative product design. MATEC web conf., 68(05001), 1–5. https://doi.org/10.1051/matecconf/20166805001
  • Kostopoulos, P., Kyritsis, A. I., Ricard, V., Deriaz, M., & Konstantas, D. (2018). Enhance daily live and health of elderly people. Procedia Computer Science, 130, 967–972. https://doi.org/10.1016/j.procs.2018.04.097
  • Lang, C. E., & Schieber, M. H. (2003). Differential impairment of individuated finger movements in humans after damage to the motor cortex or the corticospinal tract. Journal of Neurophysiology, 90(2), 1160–1170. https://doi.org/10.1152/jn.00130.2003
  • Lang, C. E., & Schieber, M. H. (2004). Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. Journal of Neurophysiology, 92(5), 2802–2810. https://doi.org/10.1152/jn.00480.2004
  • Latash, M. L., Scholz, J. F., Danion, F., & Schöner, G. (2001). Structure of motor variability in marginally redundant multifinger force production tasks. Experimental Brain Research, 141(2), 153–165. https://doi.org/10.1007/s002210100861
  • Latash, M. L., Scholz, J. F., Danion, F., & Schöner, G. (2002). Finger coordination during discrete and oscillatory force production tasks. Experimental Brain Research, 146(4), 419–432. https://doi.org/10.1007/s00221-002-1196-4
  • Levy-Tzedek, S., Hanassy, S., Abboud, S., Maidenbaum, S., & Amedi, A. (2012). Fast, accurate reaching movements with a visual-to-auditory sensory substitution device. Restorative Neurology and Neuroscience, 30(4), 313–323. https://doi.org/10.3233/RNN-2012-110219
  • Li, K., Evans, P. J., Seitz, W. H., Jr., & Li, Z.-M. (2015). Carpal tunnel syndrome impairs sustained precision pinch performance. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 126(1), 194–201. https://doi.org/10.1016/j.clinph.2014.05.004
  • Li, K., Marquardt, T. L., & Li, Z.-M. (2013). Removal of visual feedback lowers structural variability of inter-digit force coordination during sustained precision pinch. Neuroscience Letters, 545, 1–5. https://doi.org/10.1016/j.neulet.2013.04.011
  • Li, K., Wei, N., & Yue, S. (2016a, 15-17 Oct. 2016). Effects of tactile sensitivity on fingertip center-of-pressure distribution during stable precision grip. Paper presented at the 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI).
  • Li, K., Wei, N., & Yue, S. (2016b). Effects of tactile sensitivity on structural variability of digit forces during stable precision grip. BioMed Research International, 2016(8314561), 1–7. https://doi.org/10.1155/2016/8314561.
  • Lin, C.-H., Sung, W.-H., Chiang, S.-L., Lee, S.-C., Lu, L.-H., Wang, P.-C., & Wang, X.-M. (2019). Influence of aging and visual feedback on the stability of hand grip control in elderly adults. Experimental Gerontology, 119, 74–81. https://doi.org/10.1016/j.exger.2019.01.024
  • Liu, C., & Sun, Y. (2019). A simple and trustworthy asymptotic t test in difference-in-differences regressions. Journal of Econometrics, 210(2), 327–362. https://doi.org/10.1016/j.jeconom.2019.02.003
  • Mantilla, C. B., & Sieck, G. C. (2008). Trophic factor expression in phrenic motor neurons. Respiratory Physiology & Neurobiology, 164(1–2), 252–262. https://doi.org/10.1016/j.resp.2008.07.018
  • Marcell, T. J. (2003). Review article: sarcopenia: causes, consequences, and preventions. The Journals of Gerontology: Series A, 58(10), M911–M916. https://doi.org/10.1093/gerona/58.10.M911
  • Massy-Westropp, N. M., Gill, T. K., Taylor, A. W., Bohannon, R. W., & Hill, C. L. (2011). Hand grip strength: Age and gender stratified normative data in a population-based study. BMC Research Notes, 4(1), 127. https://doi.org/10.1186/1756-0500-4-127
  • Mitchell, W. K., Williams, J., Atherton, P., Larvin, M., Lund, J., & Narici, M. (2012). Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Frontiers in Physiology, 3, 260. https://doi.org/10.3389/fphys.2012.00260
  • Naqvi, S. (1993). Need for anthropometric database for developing countries. Journal of King Saud University - Engineering Sciences, 5(1), 153–154. https://doi.org/10.1016/S1018-3639(18)30577-4
  • Naqvi, S. (1996). Critical human factor issues in quality inspection tasks. Journal of King Saud University - Engineering Sciences, 8(1), 133–140. https://doi.org/10.1016/S1018-3639(18)30644-5
  • Ng, P. K., Bee, M. C., Saptari, A., & Mohamad, N. A. (2014). A review of different pinch techniques. Theoretical Issues in Ergonomics Science, 15(5), 517–533. https://doi.org/10.1080/1463922X.2013.796539
  • Nilsen, T., Hermann, M., Eriksen, C. S., Dagfinrud, H., Mowinckel, P., & Kjeken, I. (2012). Grip force and pinch grip in an adult population: reference values and factors associated with grip force, Scandinavian Journal of Occupational Therapy, 19(3), 288–296. https://doi.org/10.3109/11038128.2011.553687
  • Nurul Shahida, M. S., Siti Zawiah, M. D., & Case, K. (2015). The relationship between anthropometry and hand grip strength among elderly Malaysians. International Journal of Industrial Ergonomics, 50, 17–25. https://doi.org/10.1016/j.ergon.2015.09.006
  • Obmaces, R. (2015). Indiegogo. Grip-Aid: A device for hand mobility issues. Indiegogo. Retrieved from https://www.indiegogo.com/projects/grip-aid-a-device-for-hand-mobility-issues#/
  • Paillard, T. (2017). Relationship between muscle function, muscle typology and postural performance according to different postural conditions in young and older adults. Frontiers in Physiology, 8(585), 1–6. https://doi.org/10.3389/fphys.2017.00585
  • Pette, D. (2007). Skeletal muscle plasticity – History, facts and concepts (pp. 1–27).
  • Portnoy, S., Halaby, O., Dekel-Chen, D., & Dierick, F. (2015). Effect of an auditory feedback substitution, tactilo-kinesthetic, or visual feedback on kinematics of pouring water from kettle into cup. Applied Ergonomics, 51, 44–49. https://doi.org/10.1016/j.apergo.2015.04.008
  • Rahman, N., Thomas, J. J., & Rice, M. S. (2002). The relationship between hand strength and the forces used to access containers by well elderly persons. American Journal of Occupational Therapy, 56((1),), 78–85. https://doi.org/10.5014/ajot.56.1.78
  • Ranganathan, V. K., Siemionow, V., Sahgal, V., & Yue, G. H. (2001). Effects of aging on hand function. Journal of the American Geriatrics Society, 49((11),), 1478–1484. https://doi.org/10.1046/j.1532-5415.2001.4911240.x
  • Rantanen, T., Guralnik, J. M., Foley, D., Masaki, K., Leveille, S., Curb, J. D., & White, L. (1999). Midlife hand grip strength as a predictor of old age disability. JAMA, 281(6), 558–560. https://doi.org/10.1001/jama.281.6.558
  • Ribeiro, F., & Oliveira, J. (2007). Aging effects on joint proprioception: The role of physical activity in proprioception preservation. European Review of Aging and Physical Activity, 4(2), 71–76. https://doi.org/10.1007/s11556-007-0026-x
  • Rice, M. S., Leonard, C., & Carter, M. (1998). Grip strengths and required forces in accessing everyday containers in a normal population. American Journal of Occupational Therapy, 52(8), 621–626. https://doi.org/10.5014/ajot.52.8.621
  • Sayer, A. A., Syddall, H., Martin, H., Patel, H., Baylis, D., & Cooper, C. (2008). The developmental origins of sarcopenia. The Journal of Nutrition, Health & Aging, 12(7), 427–432. https://doi.org/10.1007/bf02982703
  • Schieber, M. H., Lang, C. E., Reilly, K. T., McNulty, P., & Sirigu, A. (2009). Selective activation of human finger muscles after stroke or amputation. In D. Sternad (Ed.), Progress in motor control: a multidisciplinary perspective (pp. 559–575). Springer US.
  • Seals, D. R., Hagberg, J. M., Hurley, B. F., Ehsani, A. A., & Holloszy, J. O. (1984). Endurance training in older men and women. I. Cardiovascular responses to exercise. Journal of Applied Physiology, 57(4), 1024–1029. https://doi.org/10.1152/jappl.1984.57.4.1024
  • Serdar, C. C., Cihan, M., Yücel, D., & Serdar, M. A. (2021). Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochemia Medica, 31((1),), 010502. https://doi.org/10.11613/BM.2021.010502
  • Shih, Y.-C., & Ou, Y.-C. (2005). Influences of span and wrist posture on peak chuck pinch strength and time needed to reach peak strength. International Journal of Industrial Ergonomics, 35(6), 527–536. https://doi.org/10.1016/j.ergon.2004.12.002
  • Shim, J. K., Latash, M. L., & Zatsiorsky, V. M. (2003). The human central nervous system needs time to organize task-specific covariation of finger forces. Neuroscience Letters, 353(1), 72–74. https://doi.org/10.1016/j.neulet.2003.08.079
  • Shim, J. K., Lay, B. S., Zatsiorsky, V. M., & Latash, M. L. (2004). Age-related changes in finger coordination in static prehension tasks. Journal of Applied Physiology (Bethesda, MD.: 1985), 97((1),), 213–224. https://doi.org/10.1152/japplphysiol.00045.2004
  • Shin, H., Moon, S. W., Kim, G.-S., Park, J. D., Kim, J. H., Jung, M. J., Yoon, C. H., Lee, E. S., & Oh, M.-K. (2012). Reliability of the pinch strength with digitalized pinch dynamometer. Annals of Rehabilitation Medicine, 36(3), 394–399. https://doi.org/10.5535/arm.2012.36.3.394
  • Shumway-Cook, A., & Woollacott, M. H. (2007). Motor Control:. Translating Research Into Clinical Practice: Lippincott Williams & Wilkins.
  • Siparsky, P. N., Kirkendall, D. T., & Garrett, W. E., Jr. (2014). Muscle changes in aging: Understanding sarcopenia. Sports Health, 6(1), 36–40. https://doi.org/10.1177/1941738113502296
  • Souchkov, V., Hoeboer, R., & Zutphen, M. V. (2007, February 5). TRIZ for business: application of RCA+ to analyse and solve business and management problems. The TRIZ Journal, 1–9. http://gg.gg/5u7sk).
  • Tekscan. (2020). FlexiForce load/force sensors and system. pressure mapping, force measurement and tactile sensors. Tekscan, Inc. Retrieved from https://www.tekscan.com/flexiforce-load-force-sensors-and-systems
  • Tomimoto, M. (2011). The frictional pattern of tactile sensations in anthropomorphic fingertip. Tribology International, 44(11), 1340–1347. https://doi.org/10.1016/j.triboint.2010.12.004
  • Wallström, Å., & Nordenskiöld, U. (2001). Assessing hand grip endurance with repetitive maximal isometric contractions. Journal of Hand Therapy, 14((4),), 279–285. https://doi.org/10.1016/S0894-1130(01)80006-5
  • Lam, N. W., Goh, H.-T., Kamaruzzaman, S. B., Chin, A., Poi, P. J. H., & Tan, M. P. (2015). Normative data for handgrip strength and key pinch strength, stratified by age and gender for a multi-ethnic Asian population, Singapore Medical Journal, 57(10), 578–584. https://doi.org/10.11622/smedj.2015164
  • Wickremaratchi, M. M., & Llewelyn, J. G. (2006). Effects of ageing on touch. Postgraduate Medical Journal, 82(967), 301–304. https://doi.org/10.1136/pgmj.2005.039651
  • Wolbrecht, E. T., Rowe, J. B., Chan, V., Ingemanson, M. L., Cramer, S. C., & Reinkensmeyer, D. J. (2018). Finger strength, individuation, and their interaction: Relationship to hand function and corticospinal tract injury after stroke. Clinical Neurophysiology, 129(4), 797–808. https://doi.org/10.1016/j.clinph.2018.01.057
  • World Health Organisation. (2016). Health statistics and information systems: proposed working definition of an older person in Africa for the MDS project. World Health Organisation. Retrieved from http://www.who.int/healthinfo/survey/ageingdefnolder/en/
  • Wu, H.-C., Chiu, M.-C., & Hou, C.-H. (2015). Nail clipper ergonomic evaluation and redesign for the elderly. International Journal of Industrial Ergonomics, 45, 64–70. https://doi.org/10.1016/j.ergon.2014.12.002
  • Yan, W., Zanni-Merk, C., Rousselot, F., Cavallucci, D., & Collet, P. (2013). A new method of using physical effects in su-field analysis based on ontology reasoning. Procedia Computer Science, 22, 30–39. https://doi.org/10.1016/j.procs.2013.09.078
  • Yeoh, T. S. (2014). TRIZ: systematic innovation in business and management (1st ed.). Firstfruits Publishing.
  • Yeoh, T. S., Yeoh, T. J., & Song, C. L. (2015). TRIZ: systematic innovation in manufacturing (1st ed.). Firstfruits Publishing.
  • Zhang, Y., Niu, J., Kelly-Hayes, M., Chaisson, C. E., Aliabadi, P., & Felson, D. T. (2002). Prevalence of symptomatic hand osteoarthritis and its impact on functional status among the elderly: the Framingham study. American Journal of Epidemiology, 156(11), 1021–1027. https://doi.org/10.1093/aje/kwf141