1,013
Views
3
CrossRef citations to date
0
Altmetric
ELECTRICAL & ELECTRONIC ENGINEERING

The Fractional Order Generalization of HP Memristor Based Chaotic Circuit with Dimensional Consistency

ORCID Icon | (Reviewing editor)
Article: 1891731 | Received 03 Nov 2020, Accepted 24 Jan 2021, Published online: 29 Mar 2021

References

  • Abdelouahab, M. S., Hamri, N. E., & Wang, J. (2012). Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dynamics, 69 (1–2), 275–28. https://doi.org/10.1007/s11071-011-0263-4
  • Abdelouahab, M. S., & Lozi, R. (2015, May). Bifurcation analysis and chaos in simplest fractional-order electrical circuit. In 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT) (pp. 1–5). IEEE. https://doi.org/10.1109/CEIT.2015.7233122
  • Ahmadi, S., & Azhari, S. J. (2018). A novel fully differential second generation current conveyor and its application as a very high CMRR instrumentation amplifier. Emerging Science Journal, 2(2), 85–92. https://doi.org/10.28991/esj-2018-01131
  • Alkahtani, B. S. T. (2016). Chua’s circuit model with Atangana–Baleanu derivative with fractional order. Chaos, Solitons, and Fractals, 89, 547–551. https://doi.org/10.1016/j.chaos.2016.03.020
  • Atangana, A., & Alkahtani, B. S. T. (2015). Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel. Advances in Mechanical Engineering, 7 (6), 1687814015591937. https://doi.org/10.1177/1687814015591937
  • Atangana, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20(2), 763–769. https://doi.org/10.2298/TSCI160111018A
  • Atangana, A., & Secer, A. (2013, March). A note on fractional order derivatives and table of fractional derivatives of some special functions. In Abstract and applied analysis (2013). Hindawi. https://doi.org/10.1155/2013/279681
  • Banchuin, R. (2018). On the memristances, parameters, and analysis of the fractional order memristor. Active and Passive Electronic Components, 2018. Retrieved from. 2018: 1–14. https://doi.org/10.1155/2018/3408480.
  • Banchuin, R. (2020). On the dimensional consistency aware fractional domain generalization of simplest chaotic circuits. Mathematical Problems in Engineering, 2020. Retrieved from. 2020: 1–20. https://doi.org/10.1155/2020/9862158.
  • Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE model of memristor with nonlinear dopant drift. Radioengineering, 182, 210–214. https://www.radioeng.cz/fulltexts/2009/09_02_210_214.pdf
  • Buscarino, A., Fortuna, L., Frasca, M., & Valentina Gambuzza, L. (2012). A chaotic circuit based on Hewlett-Packard memristor. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2), 023136. https://doi.org/10.1063/1.4729135
  • Cafagna, D., & Grassi, G. (2012). On the simplest fractional-order memristor-based chaotic system. Nonlinear Dynamics, 70 (2), 1185–1197. https://doi.org/10.1007/s11071-012-0522-z
  • Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 1–13. https://doi.org/10.2298/TSCI151224222Y
  • Chu, T., Chua, A., & Secco, E. L. (2020). A Wearable MYO Gesture Armband Controlling Sphero BB-8 Robot. HighTech and Innovation Journal, 1(4), 179–186. https://doi.org/10.28991/HIJ-2020-01-04-05
  • Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337
  • De Ninno, G., & Fanelli, D. (2004). Controlled Hopf Bifurcation of a storage-ring free-electron laser. Physical Review Letters, 92 (9), 094801. https://doi.org/10.1103/PhysRevLett.92.094801
  • Deng, H., & Wang, Q. (2013). Dynamics and synchronization of memristor-based fractional-order system. International Journal of Modern Nonlinear Theory and Application, 2(4), 223. https://doi.org/10.4236/ijmnta.2013.24031
  • Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2013). Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 367–376. https://doi.org/10.1109/JETCAS.2013.2271433
  • Gómez, F., Rosales, J., & Guía, M. (2013). RLC electrical circuit of non-integer order. Open Physics, 11 (10), 1361–1365. https://doi.org/10.2478/s11534-013-0265-6
  • Gómez‐Aguilar, J. F., Atangana, A., & Morales‐Delgado, V. F. (2017). Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives. International Journal of Circuit Theory and Applications, 45(11), 1514–1533. https://doi.org/10.1002/cta.2348 Retrieved from
  • Gómez-Aguilar, J. F., Rosales-García, J., Razo-Hernández, J. R., & Guía-Calderón, M. (2014). Fractional RC and LC electrical circuits. Ingeniería. Investigación Y Tecnología, 152, 311–319. https://doi.org/10.1016/S1405-77431472219-X
  • Guang-Yi, W., Jie-Ling, H., Fang, Y., & Cun-Jian, P. (2013). Dynamical behaviors of a TiO2 memristor oscillator. Chinese Physics Letters, 30(11), 110506. https://doi.org/10.1088/0256-307X/30/11/110506
  • Hartl, M. D. (2003). Lyapunov exponents in constrained and unconstrained ordinary differential equations (No. physics/0303077). https://cds.cern.ch/record/609829
  • Jin, P., Wang, G., Iu, H. H. C., & Fernando, T. (2017). A locally active memristor and its application in a chaotic circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(2), 246–250. https://doi.org/10.1109/TCSII.2017.2735448
  • Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits, European Journal of Physics, 30(4), 661. https://doi.org/10.1088/0143-0807/30/4/001
  • Jumarie, G. (2006). Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications, 51 (9–10), 1367–1376. https://doi.org/10.1155/2013/279681
  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
  • Mahmoud, G. M., Farghaly, A. A., & Shoreh, A. H. A technique for studying a class of fractional-order nonlinear dynamical systems. (2017). International Journal of Bifurcation and Chaos, 27(9), 1750144. https://doi.org/10.1142/S0218127417501449
  • Mahmoud, G. M., Mahmoud, E. E., & Ahmed, M. E. (2009). On the hyperchaotic complex Lü system. Nonlinear Dynamics, 58 (4), 725–738. https://doi.org/10.1007/s11071-009-9513-0
  • Martinez, L., Rosales, J. J., Carreño, C. A., & Lozano, J. M. (2018). Electrical circuits described by fractional conformable derivative. International Journal of Circuit Theory and Applications, 46 (5), 1091–1100. https://doi.org/10.1002/cta.2475
  • Muthuswamy, B., & Chua, L. O. (2010). Simplest chaotic circuit. International Journal of Bifurcation and Chaos, 20 (5), 1567–1580. https://doi.org/10.1142/S0218127410027076
  • Omidi, A., Karami, R., Emadi, P. S., & Moradi, H. (2017). Design of the low noise amplifier circuit in band L for improve the gain and circuit stability. Emerging Science Journal, 1(4), 192–200. https://doi.org/10.28991/ijse-01122
  • Petrzela, J. (2019). Accurate constant phase elements dedicated for audio signal processing. Applied Sciences, 9 (22), 4888. https://doi.org/10.3390/app9224888
  • Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 58(9), 3099–3105. https://doi.org/10.1109/TED.2011.2158004
  • Rashad, S. H., Hamed, E. M., Fouda, M. E., AbdelAty, A. M., Said, L. A., & Radwan, A. G. (2017, May). On the analysis of current-controlled fractional-order memristor emulator. In 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1–4). IEEE. https://doi.org/10.1109/MOCAST.2017.7937670
  • Schäfer, I., & Krüger, K. (2006). Modelling of coils using fractional derivatives. Journal of Magnetism and Magnetic Materials, 307 (1), 91–98. https://doi.org/10.1016/j.jmmm.2006.03.046
  • Shang, Y. (2012). A lie algebra approach to susceptible-infected-susceptible epidemics. Electronic Journal of Differential Equations, 2012233, 1–7. http://ejde.math.txstate.edu
  • Shang, Y. (2014). Vulnerability of networks: Fractional percolation on random graphs. Physical Review E, 89(1), 0128131–0128134. https://doi.org/10.1103/PhysRevE.89.012813
  • Shi, M., Yu, Y., & Xu, Q. (2018). Window function for fractional-order HP TiO2 non-linear memristor model. IET Circuits, Devices & Systems, 12(4), 447–452. https://doi.org/10.1049/iet-cds.2017.0414
  • Shotorbani, A. R., & Saghai, H. R. (2018). Modeling and implementing nonlinear equations in solid-state lasers for studying their performance. Emerging Science Journal, 2(2), 78–84. http://dx.doi.org/10.28991/esj-2018-01130
  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453 (7191), 80. https://doi.org/10.1038/nature06932
  • Teng, L., Iu, H. H., Wang, X., & Wang, X. (2014). Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dynamics, 77 (1–2), 231–241. https://doi.org/10.1007/s11071-014-1286-4
  • Volos, C., Nistazakis, H., Pham, V. T., & Stouboulos, I. (2020, September). The first experimental evidence of chaos from a nonlinear circuit with a real memristor. In 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1–4). IEEE. https://doi.org/10.1109/MOCAST49295.2020.9200269
  • Volos, C. K., Pham, V. T., Nistazakis, H. E., & Stouboulos, I. N. (2020). A dream that has come true: chaos from a nonlinear circuit with a real memristor. International Journal of Bifurcation and Chaos, 30(13), 2030036. https://doi.org/10.1142/S0218127420300360
  • Wang, G., Cui, M., Cai, B., Wang, X., & Hu, T. (2015). A chaotic oscillator based on HP memristor model. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/561901.
  • Wang, Z., Sun, C., Jin, F., Mo, W., Song, J., & Dong, K. (2018a, May). Chaotic oscillator based on a modified voltage-controlled hp memristor model. In 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 153–156). IEEE. https://doi.org/10.1109/IMCEC.2018.8469486
  • Wang, Z., Sun, C., Jin, F., Mo, W., Song, J., & Dong, K. (2018b). A widely amplitude-adjustable chaotic oscillator based on a physical model of HP memristor. IEICE Electronics Express, 15(8), 20171251. https://doi.org/10.1587/elex.15.20171251
  • Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D. Nonlinear Phenomena, 16 (3), 285–317. https://doi.org/10.1016/0167-27898590011-9
  • Yang, C., Cai, H., & Zhou, P. (2016). Stabilization of the fractional-order chua chaotic circuit via the Caputo derivative of a single input. Discrete Dynamics in Nature and Society, 2016. Retrieved from. 2016: 1–5. https://doi.org/10.1155/2016/4129756.
  • Yuan, C., & Wang, J. (2016). Hopf bifurcation analysis and control of three-dimensional Prescott neuron model. Journal of Vibroengineering, 18 (6), 4105–4115. https://doi.org/10.21595/jve.2016.16933