1,081
Views
1
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Corrosion resistance study of 439L ferritic stainless steel subjected to high temperature variation

| (Reviewing editor)
Article: 1893623 | Received 24 Jan 2020, Accepted 31 Jan 2021, Published online: 02 Mar 2021

References

  • Aniekan, I., Kelly, O. E., & Abdulsamad, G. (2017). Engineering material selection for automotive exhaust systems using CES software. International Journal of Engineering Technologies, 3(2), 50–14. https://doi.org/10.19072/ijet.282847
  • Dai, Z., He, H., & Xu, D. (2011). Failure mode analysis of automotive exhaust system hot end. SAE Technical Paper. https://doi.org/10.4271/2011-01-0787
  • Douthett, J. 2006. Automotive exhaust system corrosion, corrosion: Environments and industries, ASM Handbook, Vol. 13C, 519–530.
  • Kruger, J., Ambrose, J. R., & Kodama, T. 1975. The role of passive film growth kinetics and properties in stress corrosion and crevice corrosion susceptibility (NBSIR 75–916), Institute for Materials Research, National Bureau of Standards. https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir75-916.pdf
  • Loto, R. T. (2017). Electrochemical corrosion characteristics of 439 ferritic, 301 austenitic, s32101 duplex and 420 martensitic stainless steel in sulfuric acid/NaCl solution. Journal of Bio- & Tribo Corrosion, 3(2), 24. https://doi.org/10.1007/s40735-017-0084-1
  • Loto, R. T. (2019). Comparative study of the pitting corrosion resistance, passivation behavior and metastable pitting activity of NO7718, NO7208 and 439L super alloys in chloride/sulphate media. Journal of Materials Research and Technology, 8(1), 623–629. https://doi.org/10.1016/j.jmrt.2018.05.012
  • Loto, R. T., & Loto, C. A. (2018). Corrosion behaviour of S43035 ferritic stainless steel in hot sulphate/chloride solution. Journal of Materials Research and Technology, 7(3), 231–239. https://doi.org/10.1016/j.jmrt.2017.07.004
  • Loto, R. T., & Oghenerukewe, E. (2016). Inhibition studies of rosmarinus officinalis on the pitting corrosion resistance 439LL ferritic stainless steel in dilute sulphuric acid. Oriental Journal of Chemistry, 32(5), 2813–2832. https://doi.org/10.13005/ojc/320557
  • Maurice, V., & Marcus, P. (2018). Progress in corrosion science at atomic and nanometric scales. Progress in Materials Science, 95, 132–171. http://doi.org/10.1016/j.pmatsci.2018.03.001
  • Raja, K. S., & Jones, D. A. (2006). Effects of dissolved oxygen on passive behavior of stainless alloys. Journal for electrochemistry. Corrosion Science, 48(7), 1623–1638. https://doi.org/10.1016/j.corsci.2005.05.048
  • Sarda, S., & Bindu, R. S. (2014). Exhaust transfer connection material selection meeting critical qualification requirements in automotive application. International Journal of Mechanical and Production Engineering, 2(6), 87–91.
  • Seabra, A. S., Pereira, A. L., Moreira, M. A. R., Pereira, M. L. B., Santos, T. R. S., & Marcelino, T. A. L. (2016). Production process of an automotive exhaust. Journal of Management and Technology, 4(2). https://doi.org/10.24279/jmgmt.v4i2.633
  • Uhlig, H. H. (1958). The adsorption theory of passivity and the flade potential. Society for physical chemistry,62(6–7). https://doi.org/10.1002/bbpc.19580620603
  • Valarmathi, S., Nathc, R., & Kumar, P. (2017). Experimental analysis of exhaust manifold with ceramic coating for reduction of heat dissipation, IOP Conf. Series: Materials Science and Engineering, 197, 012051. http://doi.org/10.1088/1757-899X/197/1/012051
  • Varma, A., Newman, D., Kay, D., Gibson, G., Beevor, J., Peter, S. I., & Wells, P. Effect of regulations and standards on vehicle prices, Report for Directorate-General Climate Action, European Commission, 2011;ED56221. https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/cars/docs/report_effect_2011_en.pdf
  • Vaz, C. R., Rauen, T. R. S., & Lezana, A. G. R. (2017). Sustainability and innovation in the automotive sector: A structured content analysis. MDPI Sustainability, 9(6), 880. https://doi.org/10.3390/su9060880
  • Zhang, Q., & Cen, S. (2011). Multiphysics applications in automotive engineering. Multiphysics Modeling. http://doi.org/10.1016/C2021-0-01330-0