1,861
Views
19
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Microstructural characteristics and mechanical behaviour of aluminium matrix composites reinforced with Si-based refractory compounds derived from rice husk

ORCID Icon, , & | (Reviewing editor)
Article: 1897928 | Received 20 Sep 2020, Accepted 27 Feb 2021, Published online: 23 Mar 2021

References

  • Acheson, E. G. (1893). Carborundum: Its history, manufacture and uses. Journal of the Franklin Institute, 136(3), 194–16. https://doi.org/10.1016/0016-0032(93)90311-H
  • Adediran, A. A., Alaneme, K. K., Oladele, I. O., & Akinlabi, E. T. (2019). Structural Characterization of Silica based Carbothermal Derivatives of Rice Husk. Procedia Manufacturing, 35, 436–441. https://doi.org/10.1016/j.promfg.2019.05.063
  • Adediran, A. A., Alaneme, K. K., Oladele, I. O., Akinlabi, E. T., & Bayode, B. L. (2020). Effects of milling time on the structural and morphological features of Si-based refractory compounds derived from selected Agro-Wastes. Materials Today: Proceedings, 38(2), 928-933. https://doi.org/10.1016/j.matpr.2020.05.416
  • Adediran, A. A., Alaneme, K. K., Oladele, I. O., & Akinlabi, E. T. (2018). Processing and structural characterization of Si-based carbothermal derivatives of rice husk. Cogent Engineering, 5(1), 1–12. https://doi.org/10.1080/23311916.2018.1494499
  • Akbar, H. I., Surojo, E., & Ariawan, D. (2020). Investigation of Industrial and Agro Wastes for Aluminum Matrix Composite Reinforcement. Procedia Structural Integrity, 27, 30–37. https://doi.org/10.1016/j.prostr.2020.07.005
  • Alaneme, K. K. (2011). Fracture Toughness (K1C) evaluation for dual phase medium carbon low alloy steels using circumferential notched tensile (CNT) specimens. Materials Research, 14(2), 155–160. https://doi.org/10.1590/S1516-14392011005000028
  • Alaneme, K. K., Adewale, T., & Olubambi, P. (2014). Corrosion and wear behaviour of Al–Mg–Si alloy matrix hybrid composites reinforced with rice husk ash and silicon carbide. . Journal of Materials Research and Technology, 3(1), 9–16. https://doi.org/10.1016/j.jmrt.2013.10.008
  • Alaneme, K. K., & Adewale, T. M. (2013c). Influence of rice husk ash–silicon carbide weight ratios on the mechanical behaviour of Al–Mg–Si alloy matrix hybrid composites. Tribol. Ind, 35(2), 163–172. https://www.tribology.rs/journals/2013/2013-2/10.pdf
  • Alaneme, K. K., & Ajayi, O. J. (2017). Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite. Journal of King Saud University - Engineering Sciences, 29(2), 172–177. https://doi.org/10.1016/j.jksues.2015.06.004
  • Alaneme, K. K., Akintunde, I. B., Olubambi, P. A., & Adewale, T. M. (2013a). Fabrication characteristics and mechanical behaviour of rice husk ash – Alumina reinforced Al-Mg-Si alloy matrix hybrid composites. Journal of Materials Research and Technology, 2(1), 60–67. https://doi.org/10.1016/j.jmrt.2013.03.012
  • Alaneme, K. K., & Aluko, A. O. (2012). Fracture toughness (KIC) and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites. Scientia Iranica, Transactions A: Civil Engineering, 19(4), 992–996. https://doi.org/10.1016/j.scient.2012.06.001
  • Alaneme, K. K., Ekperusi, J. O., & Oke, S. R. (2018). Corrosion behaviour of thermal cycled aluminium hybrid composites reinforced with rice husk ash and silicon carbide. Journal of King Saud University – Engineering Sciences, 30(4), 391–397. https://doi.org/10.1016/j.jksues.2016.08.001
  • Alaneme, K. K., & Odoni, B. U. (2016). Mechanical properties, Wear and Corrosion Behavior of Copper Matrix Composites Reinforced with Steel Machining Chips. Engineering Science and Technology, an International Journal, 19(3), 1593–1599. https://doi.org/10.1016/j.jestch.2016.04.006
  • Alaneme, K. K., & Sanusi, K. O. (2015). Mechanical and wear behaviour of rice husk ash-alumina-graphite hybrid reinforced aluminium based composite. Eng. Sci. Technol. Int. J, 18, 416–422. https://doi.org/10.1016/j.jestch.2015.02.003
  • ASTM E8/ E8M-16a, standard test methods for tension testing of metallic materials. ASTM International 2016, www.astm.org
  • Astm, E.92–17, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International 2017, www.astm.org
  • Bodunrin, M. O., Alaneme, K. K., Chown, L. H. (2015). Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Journal of Materials Research and Technology, 4(4), 434-445. https://doi.org/10.1016/j.jmrt.2015.05.003
  • Chakrapani, P., & Suryakumari, T. S. A. (2020). Mechanical properties of aluminium metal matrix composites-A review. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2020.09.247(in press).
  • Chawla, N., & Shen, Y. (2001). Mechanical Behavior of Particle Reinforced Metal Matrix Composites. . Advanced Engineering Materials, 3(6), 357–370. https://doi.org/10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I
  • Coupe, A., Maskrot, H., Buet., E., Renault., A., Fontaine, P. J., & Chaffron, L. (2012). Dispersion behaviour of laser-synthesized silicon carbide nanopowders in ethanol for electrophoretic infiltration. Journal of the European Ceramic Society, 32(14), 3837–3845. https://doi.org/10.1016/j.jeurceramsoc.2012.05.022
  • Dieter, G. E. (1988). Mechanical metallurgy. McGraw-Hill.
  • Dinaharan, I., Kalaiselvan, K., & Murugan, N. (2017). Influence of rice husk ash particles on microstructure and tensile behavior of AA6061 aluminum matrix composites produced using friction stir processing. Composites Communications, 3, 42–46. https://doi.org/10.1016/j.coco.2017.02.001
  • Ebrahimpour, O., Dubois, C., & Chaouki, J. (2014). Fabrication of mullite-bonded porous SiC ceramics via a sol–gel assisted in situ reaction bonding. Journal of the European Ceramic Society, 34(2), 237–247. https://doi.org/10.1016/j.jeurceramsoc.2013.08.028
  • Edoziuno, F. O., Adediran, A. A., Odoni, B. U., Utu, O. G., & Olayanju, A. (2021). Physico-chemical and morphological evaluation of palm kernel shell particulate reinforced aluminium matrix composites. Materials Today: Proceedings, 38(2), 652-657. https://doi.org/10.1016/j.matpr.2020.03.641
  • Gladston, J. A. K., Sheriff, N. M., Dinaharan, I., & Selvam, J. D. R. (2015). Production and characterization of rice husk ash particulate reinforced AA6061 aluminium alloy composites by compocasting. 25, 683–691. https://doi.org/10.1016/S1003-6326(15)63653-6
  • Hoseinzadeh, S., Ghasemiasl, R., Bahari, A., & Ramezani, A. H. (2017). n-type WO3 semiconductor as a cathode electrochromic material for ECD devices. Journal of Materials Science: Materials in Electronics Volume, 28, 14446–14452.
  • Kala, H., Mer, K. K. S., & Kumar, S. (2014). A Review on Mechanical and Tribological Behaviors of Stir Cast Aluminum Matrix Composites.. Procedia Materials Science, 6, 1951–1960. https://doi.org/10.1016/j.mspro.2014.07.229
  • Madakson, P. B., Yawas, D. S., & Apasi, A. (2012). Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. Int. J Eng. Sci. Technol, 3(4), 1190–1198. http://www.idc-online.com/technical_references/pdfs/mechanical_engineering/Characterization%20of%20Coconut%20Shell%20Ash%20for.pdf
  • Natarajan, N., Vijayarangan, S., Rajendran, I. (2006) Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction materials. Wear, 261, 812–822
  • Nath, S. K., & Das, U. K. (2006). Effect of microstructure and notches on the fracture toughness of medium carbon steel. Journal of Naval Architecture and Marine Engineering, 3(1), 15–22. https://doi.org/10.3329/jname.v3i1.925
  • Pezzotti, G., & Sakai, M. (1994). Effect of a Silicon Carbide “Nano-Dispersion” on the Mechanical Properties of Silicon Nitride. Journal of the American Ceramic Society, 77(11), 3039–3041. https://doi.org/10.1111/j.1151-2916.1994.tb04545.x
  • Prasad, S. D., & Krishna, R. A. (2011). Production and mechanical properties of A356.2/RHA composites. Int. J. Adv. Sci. Technol, 33, 51–58. http://article.nadiapub.com/IJAST/vol33/5.pdf
  • Ramanathan, A., Krishnan, P. K., & Muraliraja, R. (2019). A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities. Journal of Manufacturing Processes, 42, 213–245. https://doi.org/10.1016/j.jmapro.2019.04.017
  • Ramezani, A. H., Hoseinzadeh, S., & Ebrahiminejad, Z. (2020). Statistical and fractal analysis of nitrogen ion implanted tantalum thin films. Applied Physics A, 126(6), 6. https://doi.org/10.1007/s00339-020-03671-7.
  • Ramezani, A. H., Hoseinzadeh, S., Ebrahiminejad, Z., Hantehzadeh, M. R., & Shafiee, M. (2021). The study of mechanical and statistical properties of nitrogen ion-implanted Tantalum bulk. Optik, 225, 165628. https://doi.org/10.1016/j.ijleo.2020.165628
  • Ravikumar, K., Kiran, K., & Sreebalaji, V. S. (2017). Characterization of mechanical properties of aluminium/tungsten carbide composites. Measurement, 102, 142–149. https://doi.org/10.1016/j.measurement.2017.01.045
  • Ravikumar, K., Pridhar, T., & Sreebalaji, V. S. (2018). Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite. Journal of Alloys and Compounds, 765, 171–179. https://doi.org/10.1016/j.jallcom.2018.06.177
  • Shabani, M. O., & Mazahery, A. (2013). The synthesis of the particulates Al matrix composites by the compocasting method. Ceramics International, 39(2), 1351–1358. https://doi.org/10.1016/j.ceramint.2012.07.073
  • Shaikh, M. B. N., Arif, S., Aziz, T., Waseem, A., Shaikh, M. A. N., & Ali, M. (2019). Microstructural, mechanical & tribological behaviour of powder metallurgy processed SiC & RHA reinforced Al-based composites. Surfaces & Interfaces, 15, 166–179. https://doi.org/10.1016/j.surfin.2019.03.002
  • Singh, J., & Chauhan, A. (2016). Characterization of hybrid aluminum matrix composites for advanced applications – A review. Journal of Materials Research and Technology, 5(2), 159–169. https://doi.org/10.1016/j.jmrt.2015.05.004
  • Singh, J., & Chauhan, A. (2017). Fabrication characteristics & tensile strength of novel Al2024/SiC/red mud composites processed via stir casting route. Transactions of Nonferrous Metals Society of China, 27(12), 2573–2586. https://doi.org/10.1016/S1003-6326(17)60285-1
  • Suthar, J., & Patel, K. M. (2018). Processing issues, machining, and applications of aluminum metal matrix composites. Materials and Manufacturing Processes, 33(5), 499–527. https://doi.org/10.1080/10426914.2017.1401713
  • Thirugnanam, A., Sukumaran, K., Pillai, U. T. S., Raghukandan, K., & Pai, B. C. (2007). Effect of Mg on the fracture characteristics of cast Al–7Si–Mg alloys. Mater. Sci. Eng. A, 445-446, 405–414. https://doi.org/10.1016/j.msea.2006.09.063
  • Verma, N., & Vettivel, S. C. (2018). Characterization and experimental analysis of boron carbide and rice husk ash reinforced AA7075 aluminium alloy hybrid composite. Journal of Alloys and Compounds, 741, 981–998. https://doi.org/10.1016/j.jallcom.2018.01.185
  • Yildirim, M., & Ozyurek, D. (2013). The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Materials & Design, 51, 767–774. https://doi.org/10.1016/j.matdes.2013.04.089
  • Zhang, J.-P., Fu, Q.-G., Qu, J.-L., Yuan, R.-M., & Li, H.-J. (2016). Blasting treatment and chemical vapor deposition of SiC nanowires to enhance the thermal shock resistance of SiC coating for carbon/carbon composites in combustion environment. Journal of Alloys and Compounds, 666, 77–83. https://doi.org/10.1016/j.jallcom.2016.01.124
  • Zulfia, A., Zhakiah, T., & Dhaneswara, D. (2007). Characteristics of Al-Si-Mg reinforced SiC composites produced by stir casting route. Materials Sci. & Engr, 202, 0102089. https://iopscience.iop.org/article/ 10.1088/1757-899X/202/1/012089