2,744
Views
3
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Shock and harmonic response analysis of UAV nose landing gear system with air damper

, , , ORCID Icon & | (Reviewing editor)
Article: 1905231 | Received 07 Dec 2020, Accepted 02 Mar 2021, Published online: 15 Apr 2021

References

  • Ahmad, M. A., Shah, S. I. A., & Shams, T. A. (2020). Comprehensive design of an oleo-pneumatic nose landing gear strut. J. Of Aerospace. Eng. First published December 13, 2020. https://doi.org/10.1177/0954410020979378
  • Asthana, C. B., & Bhat, R. B. (2012). A novel design of landing gear oleo strut damper using MR fluid for aircraft and UAV’s. App. Mech. And Mat, 225, 275–16. doi: 10.4028/www.scientific.net/amm.225.275.
  • Carames, T. M. F., Novoa, O. B., Miguez, I. F., & Lamas, P. F. (2019). Towards an autonomous industry 4.0 warehouse: A UAV and blockchain-based system for inventory and traceability applications in big data-driven supply chain management. Sensors, 19(2394). doi: 10.3390/s19102394.
  • Dragus, L., Ciobanu, I., Mazăre, C., Alexei, A., Barbareso, M., & Stanciu, F. (2019). Design a composite materials landing gear. J. Physics: Conf. Series, 1297 012008. https://iopscience.iop.org/article/ 10.1088/1742-6596/1297/1/012008.
  • Eisenbeiss, H., & Zhang, L. (2006). Comparison of DSMs generated from mini UAV imagery and terrestrial laser scanner in a cultural heritage application. Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden. https://doi.org/10.3929/ethz-b-000158047
  • Faraj, R., Graczykowski, C., & Szulc, J. H. (2018). Adaptable pneumatic shock absorber. J. Of Vib. And Cont, 24(3), 711-721. First published August 27, 2018. doi: 10.1177/1077546318795532.
  • Fuqaha, A. A., Guizani, M., Khreishah, A., Othman, N. S., Khalil, I., Almaita, E., Dou, Z., Sawalmeh, A., Fuqaha, A. A., Guizani, M., Khreishah, A., Othman, N. S., Khalil, I., Almaita, E., & Dou, Z. (2018). Unmanned aerial vehicles: A survey on civil applications and key research challenges. arXiv:1805.00881. (11). doi: 10.1109/ACCESS.2019.2909530.
  • Gualdi, S., Morandini, M., & Ghiringhelli, G. L. (2008). Anti-skid induced aircraft landing gear instability. Aerospace Science and Technology, 12(8), 627–637. doi: 10.1016/j.ast.2008.02.002.
  • Ubaidillah, Lenggana, B. W., Son, L., Imaduddin, F., Widodo, P. J., & Doewes, R. I. (2020). A new magnetorheological fluids damper for unmanned aerial vehicles. J. Of Adv. Res. In Fluid Mech. And Therm. Sci, 73 (1), 35–45. doi: 10.37934/arfmts.73.1.3545.
  • Lopes, E. D. R., & Ayala, H. V. H. (2020). Nonlinear grey-box identification of a landing gear based on drop test data. Anais Da Sociedade Brasileira De Automática, 2(1). https://doi.org/10.48011/asba.v2i1.1299
  • Luo, C., Zhao, W., Du, Z., & Yu, L. (2019). A neural network based landing method for an unmanned aerial vehicle with soft landing gears. Appl. Sci, 9(15), 2976. doi: 10.3390/app9152976.
  • Mikulowski, G., Pawlowski, P., Graczykowski, C., Wiszoway, R., & Holnocki-Szulc, J. (2009). On a pneumatic adaptive landing gear system for a small aerial vehicle. Proceedings of the IV Eccomas Thematic Conference on Smart Structure and Materials, 13-15 July, Porto.
  • Moheyeldein, M. M., Abd-El Tawwab, A. M., Abd El-gwwad, K. A., & Salem, M. M. M. (2018). An analytical study of the performance indices of air suspensions over the passive suspension. Beni-Suef Univ. J. Of Basic and App. Sci, 7(4), 525–534. doi: 10.1016/j.bjbas.2018.06.004.
  • Orlando, C. (2020). Nose landing gear simple adaptive shimmy suppression system. Journal of Guidance, Control, and Dynamics, 43(7), 1–15. https://doi.org/10.2514/1.G004832
  • Puri, A., Valavanis, K. P., & Kontitsis, M. (2007). Statistical profile generation for traffic monitoring using real-time UAV based video data. Proceedings of 15th Mediterranean Conference on Control & Automation, Athens. https://doi.org/10.1109/MED.2007.4433658
  • Rahmani, M., & Behdinan, K. (2020). Structural design and optimization of a novel shimmy damper for nose landing gears. Structural and Multidisciplinary Optimization, 62(5), 2783–2803. doi: 10.1007/s00158-020-02628-x.
  • Son, L., Bur, M., & Rusli, M. (2018). A new concept for UAV landing gear shock vibration control using pre-straining spring momentum exchange impact damper. Journal of Vibration and Control, 24(8), 1455–1468. doi: 10.1177/1077546316661470.
  • Son, L., & Huda, S. (2019). Impact vibration response attenuation using four-bar linkage landing gear system. Journal of Physics: Conference Series, 1349. doi: 10.1088/1742-6596/1349/1/012060.
  • Sugiura, R., & Ishii, K. (2005). Remote-sensing technology for vegetation monitoring using an unmanned helicopter. Journal of Biosystems Engineering, 90(4), 369–379. doi: 10.1016/j.biosystemseng.2004.12.011.
  • Tkáč, M., & Mésároš, P. (2019). Utilizing drone technology in the civil engineering. Journal of Civil Engineering, 14(1), 27–37. doi: 10.1515/sspjce-2019-0003.
  • Wang, H., Xing, J. T., Price, W. G., & Weiji, L. (2008). An investigation of an active landing gear system to reduce aircraft vibrations caused by landing impacts and runway excitations. Journal of Sound and Vibration, 317(1–2), 50–66. doi: 10.1016/j.jsv.2008.03.016.
  • Zhu, S., Wang, P., & Tian, J. (2011). Experimental research on aircraft landing gear drop test based on MRF damper. Procedia Engineering, 15, 4712–4717. doi: 10.1016/j.proeng.2011.08.882.