2,592
Views
7
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Techno-economic optimization of hybrid renewable electrification systems for Malawi’s rural villages

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1910112 | Received 25 May 2020, Accepted 19 Mar 2021, Published online: 21 Apr 2021

References

  • Al-Sharafi, A., Sahin, A. Z., Ayar, T., & Yilbas, B. S. (2017). Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and Sustainable Energy Reviews, 69(2017), 33–20. https://doi.org/10.1016/j.rser.2016.11.157. November2016.
  • Ataei, A., Choi, J., Rashidi, R., Nedaei, M., & Kurdestani, E. (2015). Simulation and Optimization of a Wind/PV/Battery hybrid power system for a commercial building. American Journal of Renewable and Sustainable Energy, 1(3), 133–139. http://www.aiscience.org/journal/ajrseSimulation
  • Baneshi, M., & Hadianfard, F. (2016). Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Conversion and Management, 127, 233–244. https://doi.org/10.1016/j.enconman.2016.09.008
  • Basir Khan, M. R., Jidin, R., Pasupuleti, J., & Shaaya, S. A. (2015). Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea. Energy, 82, 80–97. https://doi.org/10.1016/j.energy.2014.12.072
  • Belmili, H., Haddadi, M., Bacha, S., & Fayçal, M. (2014). Sizing stand-alone photovoltaic – Wind hybrid system: Techno-economic analysis and optimization. Renewable and Sustainable Energy Reviews, 30, 821–832. https://doi.org/10.1016/j.rser.2013.11.011
  • Bogaraj, T., Kanakaraj, J., & Kumar, K. (2015). Optimal sizing and cost analysis of hybrid power system for a stand-alone application in Coimbatore region: A case study. Archives of Electrical Engineering,64(1), 139–155. https://doi.org/10.1515/aee-2015-0013
  • Das, B. K., Hoque, N., Mandal, S., Pal, T. K., & Raihan, M. A. (2017). A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy, 134, 775–788. https://doi.org/10.1016/j.energy.2017.06.024
  • Diab, F., Lan, H., Zhang, L., & Ali, S. (2016). An environmentally friendly factory in Egypt based on hybrid photovoltaic/wind/diesel/battery system. Journal of Cleaner Production, 112(July), 3884–3894. https://doi.org/10.1016/j.jclepro.2015.07.008
  • Diaf, S., Notton, G., Belhamel, M., Haddadi, M., & Louche, A. (2008). Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy, 85(10), 968–987. https://doi.org/10.1016/j.apenergy.2008.02.012
  • Diemuodeke, E. O., Addo, A., Dabipi-Kalio, I., Oko, C. O. C., & Mulugetta, Y. (2017). Domestic energy demand assessment of coastline rural communities with solar electrification. Energy and Policy Research, 4(1), 1–9. https://doi.org/10.1080/23815639.2017.1280431
  • Diemuodeke, E. O., Addo, A., Oko, C. O. C., Mulugetta, Y., & Ojapah, M. M. (2019). Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm. Renewable Energy, 134, 461–477. https://doi.org/10.1016/j.renene.2018.11.055
  • Egenco. (2018). Electricity Generation in Malawi. Retrieved April 30, 2019, from www.egenco.mw
  • Feron, S. (2016). Sustainability of Off-Grid photovoltaic systems for rural electrification in developing countries: a review. Sustainability, 8(12), 1326. https://doi.org/10.3390/su8121326
  • Hossain, M., Mekhilef, S., & Olatomiwa, L. (2017). Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia. Sustainable Cities and Society, 28, 358–366. https://doi.org/10.1016/j.scs.2016.10.008
  • Hosseinalizadeh, R., Shakouri, G., . H., Amalnick, M. S., & Taghipour, P. (2016). Economic sizing of a hybrid (PV-WT-FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran. Renewable and Sustainable Energy Reviews, 54, 139–150. https://doi.org/10.1016/j.rser.2015.09.046
  • IEA, IRENA, UNSD, W. & W. (2019). Tracking SDG 7: The energy progress report.
  • Justo, J. J., Mwasilu, F., Lee, J., & Jung, J. W. (2013). AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews, 24(C), 387–405. https://doi.org/10.1016/j.rser.2013.03.067
  • Kanase-Patil, A. B., Saini, R. P., & Sharma, M. P. (2011). Development of IREOM model based on seasonally varying load profile for hilly remote areas of Uttarakhand state in India. Energy, 36(9), 5690–5702. https://doi.org/10.1016/j.energy.2011.06.057
  • Krishan, O., & Sathans. (2018). Design and techno-economic analysis of a HRES in a rural village. Procedia Computer Science, 125, 321–328. https://doi.org/10.1016/j.procs.2017.12.043
  • Lambert, T., Gilman, P., & Lilienthal, P. (2006). Micropower System Modeling with Homer. Integration of Alternative Sources of Energy, 379–418. https://doi.org/10.1002/0471755621.ch15
  • Leonics. (2018). APOLLO M-410 single phase bidirectional dual mode hybrid inverter for mini-grid system.
  • Lim, J. H. (2012). Optimal combination and sizing of a new and renewable hybrid generation system. International Journal of Future Generetaion Communication and Networking, 5(2). https://www.earticle.net/Article/A20791
  • Malanda, C., Makokha, A. B., Nzila, C., & Zalengera, C. (2020). Sustainability evaluation of hybrid renewable electrification alternatives in Malawi ’ s villages using a multi-criteria approach. Energy & Power, 10(1), 11–19. https://doi.org/10.5923/j.ep.20201001.02
  • Mandal, S., Das, B. K., & Hoque, N. (2018). Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. Journal of Cleaner Production, 20012–27. https://doi.org/10.1016/j.jclepro.2018.07.257
  • Muh, E., & Tabet, F. (2019). Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons. Renewable Energy, 135(C), 41–54. https://doi.org/10.1016/j.renene.2018.11.105
  • Murugaperumal, K., & Vimal, P. A. D. (2019). Feasibility design and techno-economic analysis of hybrid renewable energy system for rural electrification. Solar Energy, 188(February), 1068–1083. https://doi.org/10.1016/j.solener.2019.07.008
  • Olatomiwa, L., Mekhilef, S., Huda, A. S. N., & Sanusi, K. (2015). Techno-economic analysis of hybrid PV–diesel–battery and PV–wind–diesel–battery power systems for mobile BTS: The way forward for rural development. Energy Science and Engineering, 3(4), 271–285. https://doi.org/10.1002/ese3.71
  • Rozlan, M. B. M., Zobaa, A. F., & Aleem, S. H. E. A. (2011). IThe optimisation standalone hybrid renewable energy systems using HOMER o. International Review of Electrical Engineering, 6(July), 1802–1811.
  • Sandeep, L., & Atul, R. (2012). Techno-economic analysis of a hybrid mini-grid system for Fiji islands. International Journal of Energy and Environmental Engineering, 3(10). 1-10. htttp://www.journal-ijeee.com/content/3/1/10
  • Taulo, J., Gondwe, K., & Sebitosi, A. (2015). Energy supply in Malawi: options and issues. Of Energy in Southern Africa, 26(2), 19–32. https://doi.org/10.17159/2413-3051/2015/v26i2a2192
  • UNDP. (2015). Sustainable development goals, 24. https://doi.org/10.1017/CBO9781107415324.004
  • Vendoti, S., Muralidhar, M., & Kiranmayi, R. (2020). Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software. Environment, Development and Sustainability, 23, 351-372. https://doi.org/10.1007/s10668-019-00583-2
  • WHO. (2009). the energy access situation in developing countries. UNDP WHO New York, 142. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:THE+ENERGY+ACCESS+SITUATION+IN+DEVELOPING+COUNTRIES+A+Review+Focusing+on+the#0
  • World Bank. (2019). The World Bank Malawi-electricity access project ( P164331), 1–18 http://documents.worldbank.org/curated/en/313871549533419539/pdf/Concept-Project-Information-Document-Integrated-Safeguards-Data-Sheet-Malawi-Electricity-Access-Project-P164331.pdf
  • Zalengera, C. (2015). A study into the techno-economic feasibility of photovoltaic and wind generated electricity for enhancement of sustainable livelihoods on likoma island in malawi. PQDT - UK & Ireland. Loughborough. http://ezphost.dur.ac.uk/login?url=https://search.proquest.com/docview/1774182153?accountid=14533%0Ahttp://openurl.ac.uk/ukfed:dur.ac.uk?genre=dissertations+%26+theses&=&title=A+study+into+the+techno-economic+feasibility+of+photovoltaic+and+wind+gener