1,946
Views
2
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Durability assessment of basalt fiber polymer as reinforcement to expanded clay concrete in harsh environment

, , , , , & | (Reviewing editor) show all
Article: 1918855 | Received 05 Jan 2021, Accepted 13 Apr 2021, Published online: 26 Apr 2021

References

  • Aliabdo, A. A., Abd-Elmoaty, A. E. M., & Hassan, H. H. (2014). Utilization of crushed clay brick in concrete industry. Alexandria Engineering Journal, 53(1), 151–21. https://doi.org/10.1016/j.aej.2013.12.003
  • Al-Sabagh, A., Taha, E., Kandil, U., Awadallah, A., Nasr, G.-A. M., & Reda Taha, M. (2017). Monitoring moisture damage propagation in GFRP composites using carbon nanoparticles. Polymers, 9(3), 94. https://doi.org/10.3390/polym9030094
  • Arslan, M. E. (2016). Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Construction and Building Materials, 114(1), 383–391. https://doi.org/10.1016/j.conbuildmat.2016.03.176
  • Ashkan, S., Parisa, N., Ali, S. P., Mohammad, M. M., Hossein, M., & Elaheh, H. V. (2020). Prediction of mechanical properties of lightweight basalt fiber reinforced concrete containing silica fume and fly ash: Experimental and numerical assessment. Journal of Building Engineering, 32, 101732. https://doi.org/10.1016/j.jobe.2020.101732.
  • Associação Brasileira de Normas Técnicas – ABNT. (1987). NBR 9779:1987: Argamassa e concreto endurecidos – Determinação da absorção da água por capilaridade - Método de ensaio. Rio De Janeiro. https://www.passeidireto.com/arquivo/6572074/nbr-9779-argamassa-e-concreto-endurecidos-determinacao-da-absorcao-de-agua-por-c
  • Babkov, V. V., Bazhenov,, Yu, M., Bykova, A. A. (2007). Cements, concretes, mortars, and dry mixes (Vol. Part I, 804). NPO Professional.
  • Balendran, R. V., Zhou, F. P., Nadeem, A., & Leung, A. Y. T. (2002). Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Building and Environment, 37(12), 1361–1367. https://doi.org/10.1016/S0360-1323(01)00109-3
  • Barabanshchikov, Y., & Gutskalov, I. 2016. Strength and deformability of fiber reinforced cement paste on the basis of basalt fiber. Advances in Civil Engineering, 5. ( Article ID 6562526). https://doi.org/10.1155/2016/6562526.
  • Borovskikh, I. V., & Khozin, V. G. “Investigation of the influence of methods for introducing short-chopped basalt fiber on the strength characteristics of fine-grained concrete”, Construction complex of Russia: Science, education, practice: materials of the international scientific-practical conference. - Ulan-Ude: Publishing House of VSTU, pp. 27–31, 2008.
  • Branston, J., Das, S., Kenno, S. Y., & Taylor, C. (2016). Mechanical behaviour of basalt fibre reinforced concrete. Construction and Building Materials, 124, 878–886. https://doi.org/10.1016/j.conbuildmat.2016.08.009
  • BS EN 196–3. (2016). Methods of testing cement -– Part 3: Determination of setting times and soundness. British Standard. https://doi.org/10.1111/j.1748-720X.1990.tb01123.x.
  • Budkonstruktsiya, L. L. C., Technobasalt-Invest. “Test conclusions on tensile strength in bending of basalt fiber concrete”, Research and Development Enterprise Budkonstruktsiya LLC, Ukraine, 2013, http://www.technobasalt.com
  • Ceroni, F., Cosenza, E., Gaetano, M., & Pecce, M. (2006). Durability issues of frp rebars in reinforced concrete members. Cement and Concrete Composite, 28(10), 857–868. https://doi.org/10.1016/j.cemconcomp.2006.07.004
  • Chen, Y., Davalos, J. F., Ray, I., & Kim, H. Y. (2007). Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures. Composite Structures, 78(1), 101–111. https://doi.org/10.1016/j.compstruct.2005.08.015
  • Dong, Z., Wu, G., & Xu, Y. (2016). Experimental study on the bond durability between Steel-Frp Composite Bars (SFCBS) and sea sand concrete in ocean environment. Construction and Building Materials, 115, 277–284. https://doi.org/10.1016/j.conbuildmat.2016.04.052
  • Elango, K. S., Gopi, R., Jayaguru, C., Vivek, D., Saravanakumar, R., & Rajeshkumar, V. (2020). Experimental investigation on concrete beams reinforced with basalt fiber reinforced polymer bars. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.840
  • Elgabbas, F., Vincent, P., Ahmed, E. A., & Benmokrane, B. (2016). Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams. Composites Part B: Engineering, 91, 205–218. https://doi.org/10.1016/j.compositesb.2016.01.045
  • EN 14651. (2005). Test method for metallic fibred concrete — Measuring the flexural tensile strength (limit of proportionality (LOP), residual). British Standards Institute.
  • EN 1991-1-1 (English): Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]. 2002. The European Union Per Regulation.
  • EN 1992-1-1 (English): Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]. 2004. The European Union Per Regulation
  • Fractionated quartz sand. http://www.batolit.ru/93_p.shtml
  • Frazão, C., Barros, J., Toledo Filho, R., Ferreira, S., & Gonçalves, D. (2018). Development of sandwich panels combining sisal fiber-cement composites and fiber-reinforced lightweight concrete. Cement and Concrete Composites, 86, 206–223. https://doi.org/10.1016/j.cemconcomp.2017.11.008
  • Galishnikova, V. V., Kharun, M., Koroteev, D. D., & Chiadighikaobi, P. C. (2021). Basalt fiber reinforced expanded clay concrete for building structures. Magazine of Civil Engineering, 101(1), 1-12. Article No. 10107. https://doi.org/10.34910/MCE.101.7.
  • GOST 10180–2012. (2013). Concretes. Methods for strength determination using reference specimens. Moscow, 30. https://files.stroyinf.ru/Data2/1/4293782/4293782275.htm
  • Grabois, T. M., Cordeiro, G. C., & Toledo Filho, R. D. (2016). Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers. Construction and Building Materials, 104, 284–292. https://doi.org/10.1016/j.conbuildmat.2015.12.060
  • Hamad, A. J. (2014). Materials, production, properties and application of aerated lightweight concrete: Review. International Journal of Materials Science and Engineering, 2(2), 152–157. https://doi.org/10.12720/ijmse.2.2.152-157
  • Karaburc, S. N., Yildizel, S. A., & Calis, G. C. (2020). Evaluation of the basalt fiber reinforced pumice lightweight concrete. Magazine of Civil Engineering, 94(2), 81–92. https://doi.org/10.18720/MCE.94.7
  • Kim, Y.-J., Hu, J., Lee, S.-J., & You, B.-H. (2010). Mechanical properties of fiber reinforced lightweight concrete containing surfactant. Advances in Civil Engineering, 2010, 1–8. https://doi.org/10.1155/2010/549642. Article ID 5496422010.
  • Kockal, N. U., & Ozturan, T. (2011). Durability of lightweight concretes with lightweight fly ash aggregates. Construction and Building Materials, 25(3), 1430–1438. https://doi.org/10.1016/j.conbuildmat.2010.09.022
  • Komokhov, P. G. (2001). On Concrete of the 21st Century. Bulletin of RAASN, 5, 9–12.
  • Kramar, D., & Bindiganavile, V. (2013). Impact response of lightweight mortars containing expanded perlite. Cement and Concrete Composites, 37, 205–214. https://doi.org/10.1016/j.cemconcomp.2012.10.004
  • Li, S., Hu, J., & Ren, H. (2017). The combined effects of environmental conditioning and sustained load on mechanical properties of wet lay-up fiber reinforced polymer. Polymers, 9(12), 244. https://doi.org/10.3390/polym9070244
  • Libre, N. A., Shekarchi, M., Mahoutian, M., & Soroushian, P. (2011). Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, 25(5), 2458–2464. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.058
  • Lu, Z., Xian, G., & Li, H. (2015). Effects of exposure to elevated temperatures and subsequent immersion in water or alkaline solution on the mechanical properties of pultruded BFRP plates. Composites, Part B, 77, 421–430. https://doi.org/10.1016/j.compositesb.2015.03.066
  • Ma, J., Qiu, X., Cheng, L., & Wang, Y. “Experimental research on the fundamental mechanical properties of presoaked basalt fiber concrete”, in CICE 2010—The 5th International Conference on FRP composites in civil engineering, pp. 1–4, Beijing, China, September 2010.
  • Md, I., Sharmin, N. S., Md, M., & Akhtar, U. S. U. (2016). Effect of soda lime silica glass waste on the basic properties of clay aggregate. International Journal of Scientific and Engineering Research, 7(4), 149–154. https://www.ijser.org/researchpaper/Effect-of-Soda-lime-Silica-Glass-waste-on-the-basic-properties-of-Clay-Aggregate.pdf
  • Mishra, A. K., & Chakraborty, S. (2016). Inverse detection of constituent level elastic parameters of FRP composite panels with elastic boundaries using finite element model updating. Ocean Engineering, 111, 358–368. https://doi.org/10.1016/j.oceaneng.2015.11.003
  • Nishizaki, I., Sakuraba, H., & Tomiyama, T. (2015). Durability of pultruded gfrp through ten-year outdoor exposure test. Polymers, 7(12), 2494–2503. https://doi.org/10.3390/polym7121525
  • Nizina, T. A., Balykov, A. S., Volodin, V. V., & Korovkin, D. I. (2017). Fiber fine-grained concretes with polyfunctional modifying additives. Magazine of Civil Engineering, 72(4), 73–83. https://doi.org/10.18720/MCE.72.9
  • Nizina, T. A., Ponomarev, A. N., Balykov, A. S., & Pankin, N. A. (2017). Fine-grained fibre concretes modified by complexed nanoadditives. International Journal of Nanotechnology, 14(7–8), 665–667. https://doi.org/10.1504/IJNT.2017.083441
  • Pan, Y., Xian, G., & Silva, M. A. G. (2015). Effects of water immersion on the bond behavior between CFRP plates and concrete substrate. Construction and Building Materials, 101(1), 326–337. https://doi.org/10.1016/j.conbuildmat.2015.10.129
  • Posi, P., Teerachanwit, C., Tanutong, C., Limkamoltip, S., Lertnimoolchai, S., Sata, V., & Chindaprasirt, P. (2013). Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials and Design, 52, 580–586. https://doi.org/10.1016/j.matdes.2013.06.001
  • Ralegaonkar, R., Gavali, H., Aswath, P., & Abolmaali, S. (2018). Application of chopped basalt fibers in reinforced mortar: A review. Construction and Building Materials, 164, 589–602. https://doi.org/10.1016/j.conbuildmat.2017.12.245
  • Sadik, A. Y., & Gokhan, C. (2019). Design and optimization of basalt fiber added lightweight pumice concrete using taguchi method. Revista Româna De Materiale/Romanian Journal of Materials, 49(4), 544–553. https://solacolu.chim.upb.ro/pg544-553.pdf
  • Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. https://doi.org/10.1016/j.serj.2017.09.001
  • Sepehr, M. N., Kazemian, H., Ghahramani, E., Amrane, A. V., Sivasankar, V., & Zarrabi, M. (2014). Defluoridation of water via Light Weight Expanded Clay Aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1821–1834. https://doi.org/10.1016/j.jtice.2014.02.009
  • Shafigh, P., Hassanpour, M., Razavi, S. V., & Kobraei, M. (2011). An investigation of the flexural behaviour of reinforced lightweight concrete beams. International Journal of Physical Sciences, 6(10), 2414–2421. https://doi.org/10.5897/IJPS10.550
  • Shariq, M., Prasad, J., & Abbas, H. (2013). Effect of GGBFS on age dependent static modulus of elasticity of concrete. Construction and Building Materials, 41, 411–418. https://doi.org/10.1016/j.conbuildmat.2012.12.035
  • Silica Fume MK-85, Additive in concrete http://www.geogips.ru/catalog/cement_i_dobavki/plasticizer-accelerator/microsilica-mk-85_10kg/
  • Slater, E., Moni, M., & Alam, M. S. (2012). Predicting the shear strength of steel fiber reinforced concrete beams. Construction and Building Materials, 26(1), 423–436. https://doi.org/10.1016/j.conbuildmat.2011.06.042
  • The Pennsylvania State University. (2014). The effect of aggregate properties on concrete.
  • Thomas, M. D. A. (2007). Optimizing the Use of Fly Ash in Concrete. Portland Cement Association, 24. https://www.academia.edu/7911232/Optimizing_the_Use_of_Fly_Ash_in_Concrete
  • Wang, D., Ju, Y., Shen, H., & Xu, L. (2019). Mechanical properties of high-performance concrete reinforced with basalt fiber and polypropylene fiber. Construction and Building Materials, 197, 464–473. https://doi.org/10.1016/j.conbuildmat.2018.11.181
  • Wang, Z. K., Zhao, X. L., Xian, G. J., Wu, G., Raman, R. K. S., Al-Saadi, S., & Haque, A. (2017). Long-term durability of Basalt- and Glass-Fibre Reinforced Polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Construction and Building Materials, 139, 467–489. https://doi.org/10.1016/j.conbuildmat.2017.02.038
  • Xian, G., & Karbhari, V. M. (2007). Segmental relaxation of water-aged ambient cured epoxy. Polymer Degradation and Stability, 92(9), 1650–1659. https://doi.org/10.1016/j.polymdegradstab.2007.06.015
  • Zaetang, Y. Wongsa, A., Sata, V., Chindaprasirt, P., (2013). Use of lightweight aggregates in pervious concrete, Construction and Building Materials, 48, 585–591
  • Zendehzaban, M., Sharifnia, S., & Hosseini, S. N. (2013). Photocatalytic degradation of ammonia by Light Expanded Clay Aggregate (LECA)-coating of TiO2 nanoparticles. Korean Journal of Chemical Engineers, 30(3), 574–579. https://doi.org/10.1007/s11814-012-0212-z
  • Zhao, Q., Dong, J., Pan, H., & Hao, S. (2010). Impact behavior of basalt fiber reinforced concrete. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 27(6), 120–125. https://www.researchgate.net/publication/288304151_Impact_behavior_of_basalt_fiber_reinforced_concrete
  • Zheng, Y., Zhang, P., Cai, Y., Jin, Z., & Moshtagh, E. (2019). Cracking resistance and mechanical properties of basalt fibers reinforced cement-stabilized macadam. Composites Part B: Engineering, 165, 312–334. https://doi.org/10.1016/j.compositesb.2018.11.115