1,480
Views
1
CrossRef citations to date
0
Altmetric
ELECTRICAL & ELECTRONIC ENGINEERING

An efficient color image encryption scheme based on a matrix scrambling method and a new hybrid chaotic map

| (Reviewing editor)
Article: 1940638 | Received 16 Mar 2021, Accepted 03 Jun 2021, Published online: 21 Jun 2021

References

  • Addabbo, T., Fort, A., Rocchi, S., & Vignoli, V. (2009). Chaos based generation of true random bits. In Kocarev L., Galias Z., Lian S. (eds), Intelligent computing based on Chaos (pp. 355–24). Springer.
  • Ahmad, J., & Hwang, S. O. (2015). Chaos-based diffusion for highly autocorrelated data in encryption algorithms. Nonlinear Dynamics, 82(4), 1839–1850. https://doi.org/10.1007/s11071-015-2281-0
  • Ahmad, J., & Hwang, S. O. (2016). A secure image encryption scheme based on chaotic maps and affine transformation. Multimedia Tools and Applications, 75(21), 13951–13976. https://doi.org/10.1007/s11042-015-2973-y
  • Alawida, M., Samsudin, A., Teh, J. S., & Alkhawaldeh, R. S. (2019). A new hybrid digital chaotic system with applications in image encryption. Signal Processing, 160, 45–58. https://doi.org/10.1016/j.sigpro.2019.02.016
  • Alhadawi, H. S., Zolkipli, M. F., Ismail, S. M., & Lambić, D. (2019). Designing a pseudorandom bit generator based on LFSRs and a discrete chaotic map. Cryptologia, 43(3), 190–211. https://doi.org/10.1080/01611194.2018.1548390
  • Al-Saidi, N. M., Younus, D., Natiq, H. K., Ariffin, M. R., Asbullah, M. A., & Mahad, Z. (2020). A new hyperchaotic map for a secure communication scheme with an experimental realization. Symmetry, 12(11), 1–17. https://doi.org/10.3390/sym12111881
  • An, X. L., Yu, J. N., Li, Y. Z., Chu, Y. D., Zhang, J. G., & Li, X. F. (2011). Design of a new multistage chaos synchronized system for secure communications and study on noise perturbation. Mathematical and Computer Modelling, 54(1–2), 7–18. https://doi.org/10.1016/j.mcm.2011.01.020
  • Arab, A., Rostami, M. J., & Ghavami, B. (2019). An image encryption method based on chaos system and AES algorithm. The Journal of Supercomputing, 75(10), 6663–6682. https://doi.org/10.1007/s11227-019-02878-7
  • Battikh, D., El Assad, S., Bakhache, B., Déforges, O., & Khalil, M. (2014). Chaos-based spatial steganography system for images. International Journal of Chaotic Computing, 3(1), 36–44. https://doi.org/10.20533/ijcc.2046.3359.2014.0005
  • Bilal, M., Imtiaz, S., Abdul, W., Ghouzali, S., & Asif, S. (2014). Chaos based Zero-steganography algorithm. Multimedia Tools and Applications, 72(2), 1073–1092. https://doi.org/10.1007/s11042-013-1415-y
  • Chen, J. X., Zhu, Z. L., Fu, C., Yu, H., & Zhang, L. B. (2015). A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism. Communications in Nonlinear Science & Numerical Simulation, 20(3), 846–860. https://doi.org/10.1016/j.cnsns.2014.06.032
  • Chen, Q., Ren, X., & Na, J. (2015). Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors. ISA transactions, 58, 262–269. https://doi.org/10.1016/j.isatra.2015.07.005
  • Eisencraft, M., Fanganiello, R. D., Grzybowski, J. M. V., Soriano, D. C., Attux, R., Batista, A. M., Macau, E. E. N., Monteiro, L. H. A., Romano, J. M. T., Suyama, R., & Yoneyama, T. (2012). Chaos-based communication systems in non-ideal channels. Communications in Nonlinear Science & Numerical Simulation, 17(12), 4707–4718. https://doi.org/10.1016/j.cnsns.2011.05.030
  • Fan, H., & Li, M. (2017). Cryptanalysis and improvement of chaos-based image encryption scheme with circular inter-intra-pixels bit-level permutation. Mathematical Problems in Engineering, 2017, 1–11. https://doi.org/10.1155/2017/8124912
  • Fu, C., Chen, J. J., Zou, H., Meng, W. H., Zhan, Y. F., & Yu, Y. W. (2012). A chaos-based digital image encryption scheme with an improved diffusion strategy. Optics Express, 20(3), 2363–2378. https://doi.org/10.1364/OE.20.002363
  • Fu, C., Zhang, G. Y., Zhu, M., Chen, Z., & Lei, W. M. (2018). A new chaos-based color image encryption scheme with an efficient substitution keystream generation strategy. Security and Communication Networks, 2018, 1–13. https://doi.org/10.1155/2018/2708532
  • Ghasemi, M., Ghavidel, S., Aghaei, J., Gitizadeh, M., & Falah, H. (2014). Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system. Chaos, Solitons, and Fractals, 69, 271–284. https://doi.org/10.1016/j.chaos.2014.10.007
  • Ginarsa, I. M., Soeprijanto, A., & Purnomo, M. H. (2013). Controlling chaos and voltage collapse using an ANFIS-based composite controller-static var compensator in power systems. International Journal of Electrical Power & Energy Systems, 46, 79–88. https://doi.org/10.1016/j.ijepes.2012.10.005
  • Gong, L., Wu, R., & Zhou, N. (2020). A New 4D Chaotic system with coexisting hidden chaotic attractors. International Journal of Bifurcation and Chaos, 30(10), 2050142. https://doi.org/10.1142/S0218127420501424
  • Hathal, H. M., Abdulhussein, R. A., & Ibrahim, S. K. (2014). Lyapunov exponent testing for AWGN Generator system. Communications and Network, 6(04), 201. https://doi.org/10.4236/cn.2014.64022
  • Hu, J., Ma, J., & Lin, J. (2010). Chaos synchronization and communication of mutual coupling lasers ring based on incoherent injection. Optik, 121(24), 2227–2229. https://doi.org/10.1016/j.ijleo.2009.09.006
  • Jiang, N., Pan, W., Yan, L., Luo, B., Xiang, S., Yang, L., & Li, N. (2011). Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser. IEEE Journal of Selected Topics in Quantum Electronics, 17(5), 1220–1227. https://doi.org/10.1109/JSTQE.2011.2110638
  • Kaddoum, G., Coulon, M., Roviras, D., & Chargé, P. (2010). Theoretical performance for asynchronous multi-user chaos-based communication systems on fading channels. Signal Processing, 90(11), 2923–2933. https://doi.org/10.1016/j.sigpro.2010.04.013
  • Kang, Z., Sun, J., Ma, L., Qi, Y., & Jian, S. (2014). Multimode synchronization of chaotic semiconductor ring laser and its potential in chaos communication. IEEE Journal of Quantum Electronics, 50(3), 148–157. https://doi.org/10.1109/JQE.2014.2299593
  • Kar, N., Mandal, K., & Bhattacharya, B. (2018). Improved chaos-based video steganography using DNA alphabets. ICT Express, 4(1), 6–13. https://doi.org/10.1016/j.icte.2018.01.003
  • Khan, J. S., Boulila, W., Ahmad, J., Rubaiee, S., Rehman, A. U., Alroobaea, R., & Buchanan, W. J. (2020). DNA and plaintext dependent chaotic visual selective image encryption. IEEE Access, 8, 159732–159744. https://doi.org/10.1109/ACCESS.2020.3020917
  • Liu, Q., Li, P. Y., Zhang, M. C., Sui, Y. X., & Yang, H. J. (2015). A novel image encryption algorithm based on chaos maps with Markov properties. Communications in Nonlinear Science & Numerical Simulation, 20(2), 506–515. https://doi.org/10.1016/j.cnsns.2014.06.005
  • Mastan, J. M. K., & Pandian, R. (2020). Cryptanalysis of two similar chaos-based image encryption schemes. Cryptologia, 1–12. https://doi.org/10.1080/01611194.2020.1814447
  • Moysis, L., Tutueva, A., Volos, C., Butusov, D., Munoz-Pacheco, J. M., & Nistazakis, H. (2020). A two-parameter modified logistic map and its application to random bit generation. Symmetry, 12(5), 829. https://doi.org/10.3390/sym12050829
  • Murillo-Escobar, M. A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R. M., & Del Campo, O. A. (2015). A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Processing, 109, 119–131. https://doi.org/10.1016/j.sigpro.2014.10.033
  • Ogras, H. (2019). An efficient steganography technique for images using chaotic bitstream. International Journal of Computer Network and Information Security, 10(2), 21. https://doi.org/10.5815/ijcnis.2019.02.03
  • Oğraş, H., & Mustafa, T. (2017). FPGA implementation of a chaotic quadratic map for cryptographic applications. Turkish Journal of Science and Technology, 12(2), 113–119. https://dergipark.org.tr/tr/download/article-file/345040
  • Oğraş, H., & Türk, M. (2016). A robust chaos-based image cryptosystem with an improved key generator and plain image sensitivity mechanism. Journal of Information Security, 8(01), 23. https://doi.org/10.4236/jis.2017.81003
  • Patidar, V., Pareek, N. K., Purohit, G., & Sud, K. K. (2011). A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption. Optics Communications, 284(19), 4331–4339. https://doi.org/10.1016/j.optcom.2011.05.028
  • Qayyum, A., Ahmad, J., Boulila, W., Rubaiee, S., Masood, F., Khan, F., & Buchanan, W. J. (2020). Chaos-based confusion and diffusion of image pixels using dynamic substitution. IEEE Access, 8, 140876–140895. https://doi.org/10.1109/ACCESS.2020.3012912
  • Rukhin, A., Soto, J., Nechvatal, J., Smid, M., & Barker, E. (2001). A statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards and Technology.
  • Ryu, H. G., & Lee, J. H. (2013). High security wireless CDSK-based chaos communication with new chaos map. In MILCOM 2013-2013 IEEE Military Communications Conference (pp. 786–790). USA: IEEE. https://doi.org/10.1109/MILCOM.2013.139.
  • Saeed, M. J. (2013). A new technique based on chaotic steganography and encryption text in DCT domain for color image. Journal of Engineering Science and Technology, 8(5), 508–520. http://jestec.taylors.edu.my/Vol%208%20Issue%205%20October%2013/Volume%20(8)%20Issue%20(5)%20508-%20520.pdf
  • Som, S., & Sen, S. (2013). A non-adaptive partial encryption of grayscale images based on chaos. Procedia Technology, 10, 663–671. https://doi.org/10.1016/j.protcy.2013.12.408
  • Telem, A. N. K., Segning, C. M., Kenne, G., & Fotsin, H. B. (2014). A simple and robust gray image encryption scheme using chaotic logistic map and artificial neural network. Advances in Multimedia, 2014, 1-13. https://doi.org/10.1155/2014/602921
  • Tur, M. R., & Ogras, H. (2021). Transmission of frequency balance instructions and secure data sharing based on chaos encryption in smart grid-based energy systems applications. IEEE Access, 9, 27323–27332. https://doi.org/10.1109/ACCESS.2021.3058106
  • Türk, M., & Oğraş, H. (2011). Classification of chaos-based digital modulation techniques using wavelet neural networks and performance comparison of wavelet families. Expert Systems with Applications, 38(3), 2557–2565. https://doi.org/10.1016/j.eswa.2010.08.045
  • Wang, Y., Wong, K. W., Liao, X., & Chen, G. (2011). A new chaos-based fast image encryption algorithm. Applied Soft Computing, 11(1), 514–522. https://doi.org/10.1016/j.asoc.2009.12.011
  • Xu, L., Li, Z., Li, J., & Hua, W. (2016). A novel bit-level image encryption algorithm based on chaotic maps. Optics and Lasers in Engineering, 78, 17–25. https://doi.org/10.1016/j.optlaseng.2015.09.007
  • Yang, J., Chen, Y., & Zhu, F. (2015). Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication. Neurocomputing, 167, 587–595. https://doi.org/10.1016/j.neucom.2015.04.030
  • Yang, J., & Zhu, F. (2013). Synchronization for chaotic systems and chaos-based secure communications via both reduced-order and step-by-step sliding mode observers. Communications in Nonlinear Science & Numerical Simulation, 18(4), 926–937. https://doi.org/10.1016/j.cnsns.2012.09.009
  • Yasser, I., Khalifa, F., Mohamed, M. A., & Samrah, A. S. (2020). A new image encryption scheme based on hybrid chaotic maps. Complexity, 2020, 1–23. https://doi.org/10.1155/2020/9597619
  • Yau, H. T., Wang, M. H., Wang, T. Y., & Chen, G. (2015). Signal clustering of power disturbance by using chaos synchronization. International Journal of Electrical Power & Energy Systems, 64, 112–120. https://doi.org/10.1016/j.ijepes.2014.07.014
  • Ye, R. (2011). A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism. Optics Communications, 284(22), 5290–5298. https://doi.org/10.1016/j.optcom.2011.07.070
  • Ye, R., & Guo, W. (2014). An image encryption scheme based on chaotic systems with changeable parameters. International Journal of Computer Network and Information Security, 6(4), 37. https://doi.org/10.5815/ijcnis.2014.04.05
  • Yibei, W., Man, L., Yanting, X., & Hougui, C. (2011). Research on chaos phenomena in power system. In 2011 IEEE Power Engineering and Automation Conference Vol. 2, 453–456. Wuhan, China: IEEE. https://doi.org/10.1109/PEAM.2011.6135097.
  • Yoon, J. W., & Kim, H. (2010). An image encryption scheme with a pseudorandom permutation based on chaotic maps. Communications in Nonlinear Science & Numerical Simulation, 15(12), 3998–4006. https://doi.org/10.1016/j.cnsns.2010.01.041
  • Zhou, N., Wang, Y., Gong, L., He, H., & Wu, J. (2011). Novel single-channel color image encryption algorithm based on chaos and fractional Fourier transform. Optics Communications, 284(12), 2789–2796. https://doi.org/10.1016/j.optcom.2011.02.066
  • Zhou, N. R., Hua, T. X., Gong, L. H., Pei, D. J., & Liao, Q. H. (2015). Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Information Processing, 14(4), 1193–1213. https://doi.org/10.1007/s11128-015-0926-z
  • Zhou, X., Li, J., & Youjie, M. (2012). Chaos phenomena in dc-dc converter and chaos control. Procedia Engineering, 29, 470–473. https://doi.org/10.1016/j.proeng.2011.12.744
  • Zhu, H., Zhao, C., & Zhang, X. (2013). A novel image encryption–compression scheme using hyper-chaos and Chinese remainder theorem. Signal Processing: Image Communication, 28(6), 670–680. https://doi.org/10.1016/j.image.2013.02.004
  • Zhu, Z. L., Zhang, W., Wong, K. W., & Yu, H. (2011). A chaos-based symmetric image encryption scheme using a bit-level permutation. Information Sciences, 181(6), 1171–1186. https://doi.org/10.1016/j.ins.2010.11.009