4,877
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Conceptual design and analysis of a car bumper using finite element method

ORCID Icon, , , , & ORCID Icon | (Reviewing editor) show all
Article: 1976480 | Received 18 Jun 2021, Accepted 30 Aug 2021, Published online: 17 Oct 2021

References

  • Afripin, M. A. A., Zainudin, A. Z., Sahar, M. A. H. F. M., & Yusof, M. (2019). Frontal impact on bus superstructure as per UNECE R29 and NCAP. IOP Conf Ser Mater Sci Eng, 670, 012014. https://doi.org/10.1088/1757-899X/670/1/012014
  • Alavinia, A., & Sadeghi, M. Z. (2013). An experimental investigation on the effect of strain rate on the behaviour of bare and foam-filled aluminium honeycombs. J Mater, 52, 748–756. https://doi.org/10.1016/j.matdes.2013.06.006
  • ASM Ashab, A. S. M., Ruan, D., Lu, G., et al (2015). Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation. J Mater, 74, 138–11. https://doi.org/10.1016/j.matdes.2015.03.004
  • Baker, W. E., Togami, T. C., & Weydert, J. C. (1998). HIGH-DENSITY METAL HONEYCOMBS (Vol. 21, pp. 149–163).
  • Bhowmik, A., & Mishra, D. (2018). A Comprehensive Study of an Aluminum Alloy AL-5052. Adv Phys Lett, 3(1), 20–22. http://www.irdindia.in/journal_apl/pdf/vol3_iss1/5.pdf http://www.irdindia.in/journal_apl/pdf/vol3_iss1/5.pdf
  • Bhowmik, A., & Srivas AK, S. P. (2016). A Review of the properties of Aluminum Alloy Al 5052. J Sci Res Allied Sci, 2, 25–30. http://jusres.com/home/archive_show/2016/5/2
  • Castaldo, P., Gino, D., Bertagnoli, G., & Mancini, G. (2020). Resistance model uncertainty in non-linear finite element analyses of cyclically loaded reinforced concrete systems. Engineering Structures, 211, 110496. https://doi.org/10.1016/j.engstruct.2020.110496
  • Castaldo, P., Gino, D., & Mancini, G. (2019). Safety formats for non-linear finite element analysis of reinforced concrete structures: Discussion, comparison and proposals. Eng Struct, 193, 136–153. https://doi.org/10.1016/j.engstruct.2019.05.029
  • Castaldo, P., Nastri, E., & Piluso, V. (2017a). FEM simulations and rotation capacity evaluation for RHS temper T4 aluminium alloy beams. Compos Part B Eng, 115, 124–137. https://doi.org/10.1016/j.compositesb.2016.10.026
  • Castaldo, P., Nastri, E., & Piluso, V. (2017b). Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis. Thin-Walled Struct, 115, 129–141. https://doi.org/10.1016/j.tws.2017.02.006
  • Celarec, D., & Dolšek, M. (2013). The impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildings. Eng Struct, 52, 340–354. https://doi.org/10.1016/j.engstruct.2013.02.036
  • Chethan, K. N., Bhat, S. N., Zuber, M., & Shenoy, S. B. (2019). Patient-Specific Static Structural Analysis of Femur Bone of different lengths. Open Biomed Eng J, 12, 108–114. https://doi.org/10.2174/1874120701812010108
  • Chethan, K. N., Keni, L. G., Padmaraj, N. H., et al (2018). Fabrication and Mechanical characterization of aluminium [6061] with conventionally prepared bamboo charcoal. Mater Today Proc, 5(2), 3465–3475. https://doi.org/10.1016/j.matpr.2017.11.593
  • Chethan, K. N., Ogulcan, G., . N. S. B., et al (2020). Wear estimation of trapezoidal and circular shaped hip implants along with varying taper trunnion radiuses using finite element method. Comput Methods Programs Biomed. 196, 1–9. https://doi.org/10.1016/j.cmpb.2020.105597.
  • Chethan, K. N., Pai, A., Padmaraj, N. H., et al (2018). Effect of bamboo char and boron carbide particles on mechanical characteristics of Aluminum 6061 hybrid composites. IOP Conf Ser Mater Sci Eng, 377, 012038. https://doi.org/10.1088/1757-899X/377/1/012038
  • Chethan, K. N., Shyamasunder Bhat, N., Zuber, M., & Satish Shenoy, B. (2019). Finite element analysis of different hip implant designs along with femur under static loading conditions. J Biomed Phys Eng, 9, 507–516. https://doi.org/10.31661/jbpe.v0i0.1210
  • Chethan, K. N., Zuber, M., Bhat, N. S., et al (2019). Static structural analysis of different stem designs used in total hip arthroplasty using finite element method. Heliyon, 5(6), e01767. https://doi.org/10.1016/j.heliyon.2019.e01767
  • Chethan, K. N., Zuber, M., Bhat, S. N., & Shenoy, S. B. (2019). Comparative Study of Femur Bone Having Different Boundary Conditions and Bone Structure Using Finite Element Method. Open Biomed Eng J, 12(1), 115–134. https://doi.org/10.2174/1874120701812010115
  • Deqiang, S., Weihong, Z., & Yanbin, W. (2010). Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Compos Struct, 92(11), 2609–2621. https://doi.org/10.1016/j.compstruct.2010.03.016
  • Fischer, S., Drechsler, K., Kilchert, S., & Johnson, A. (2009). Composites : Part A Mechanical tests for foldcore base material properties. Compos Part A, 40(12), 1941–1952. https://doi.org/10.1016/j.compositesa.2009.03.005
  • Grall, L., & Zeitouni, R. Adalian C No Title (pp. 1–13).
  • Guo, X. E., & LJG, R. (1999). Behavior of intact and damaged honeycombs: A finite element study. International Journal of Mechanical Sciences, 41(1), 85–105. https://doi.org/10.1016/S0020-7403(98)00037-X
  • Hs, D. O. T. (2007). The New Car Assessment Program Suggested Approaches for Future Program Enhancements. Federal Register.
  • Hu, L., You, F., & Yu, T. (2013). Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater Des, 46, 511–523. https://doi.org/10.1016/j.matdes.2012.10.050
  • Hu, L., You, F., & Yu, T. (2014). Analyses on the dynamic strength of honeycombs under the y -directional crushing. J Mater, 53, 293–301. https://doi.org/10.1016/j.matdes.2013.06.076
  • Kannan, V. S., Surendar, J. S., Sundaram, S. C. M., et al (2020). Crash Analysis on Automobile Bumpers. IOP Conf Ser Mater Sci Eng 923:, 923, 012018. https://doi.org/10.1088/1757-899X/923/1/012018
  • Kiran NS, V. S. N. C. D., & BA, R. (2014). Fea Analysis (Dynamic) on a Passenger Car Bumper Body Material (Vol. 1, pp. 33–37).
  • Ko, H., Shin, K., Jeon, K., & Cho, S. (2009). A study on the crashworthiness and rollover characteristics of low-floor bus made of sandwich composites †. 23, 2686–2693. https://doi.org/10.1007/s12206-009-0731-7
  • Kumbhar, B. K., Patil, S. R., & Sawant, S. M. (2017). A Comparative Study on Automotive Brake Testing Standards. J Inst Eng Ser C, 98(4), 527–531. https://doi.org/10.1007/s40032-016-0289-y
  • Lee, K. S., Jeong, P. J., Lee, H., et al (2009). Conceptual design of microcellular plastics bumper parts using axiomatic approach. Polym - Plast Technol Eng, 48(10), 1101–1106. https://doi.org/10.1080/03602550903147221
  • Madenci, E., & Özütok, A. (2017). Variational Approximate and Mixed-Finite Element Solution for Static Analysis of Laminated Composite Plates. Solid State Phenom, 267, 35–39. https://doi.org/10.4028/www.scientific.net/SSP.267.35
  • Mao, M., Chirwa, E. C., & Wang, W. (2006). Assessment of vehicle roof crush test protocols using FE models: Inverted drop tests versus updated FMVSS No. 216. Int J Crashworthiness, 11(1), 49–63. https://doi.org/10.1533/ijcr.2005.0383
  • Mekalke, G. C. (2014). Crash Analysis of front Bumper of SUVs using FEA Technique for Improvements of Its Design (Vol. 03, pp. 1234–1236).
  • Mozafari, H., Khatami, S., & Molatefi, H. (2015). Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress – Numerical study. Mater Des, 66, 400–411. https://doi.org/10.1016/j.matdes.2014.07.037
  • Muhammad, N. S., Hambali, A., Rosidah, J., et al (2017). A review of energy absorption of automotive bumper beam. Int J Appl Eng Res, 12(2), 238–245. https://www.ripublication.com/ijaer17/ijaerv12n2_14.pdf https://www.ripublication.com/ijaer17/ijaerv12n2_14.pdf
  • Özütok, A., & Madenci, E. (2017). Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method. Int J Mech Sci, 130, 234–243. https://doi.org/10.1016/j.ijmecsci.2017.06.013
  • Pewekar, M., & Sandye, P. P. (2018). Design of subsystems of Go-kart vehicle. International Journal of Science, Engineering and Technology Research, 7(1).
  • PTRS, A. (2006). Multifunctional periodic cellular metals. Philos Trans A Math Phys Eng Sci, 364(1838), 31–68. PMID: 18272452. https://doi.org/10.1098/rsta.2005.1697
  • Raj Kumar, G., Balasubramaniyam, S., Senthil Kumar, M., et al (2019). Crash analysis on the automotive vehicle bumper. Int J Eng Adv Technol, 8, 1602–1607. https://doi.org/10.35940/ijeat.F1296.0986S319
  • Rajaraman, R., Patel, M., & Padmanaban, J. (2017) Characteristics of passenger car crashes in India, and a preliminary assessment of Euro NCAP frontal impact tests for passenger cars in India. Conf Proc Int Res Counc Biomech Inj IRCOBI 2017-September:36–44
  • Sharma K V, G. V. R. B., & YRT, Y. (2014) Deformation and impact energy absorption of cellular sandwich panels. J Mater. Materials and Design. https://doi.org/10.1016/j.matdes.2014.04.047
  • Sonawane, C. R., & Shelar, A. L. (2018). Strength Enhancement of Car Front Bumper for Slow Speed Impact by FEA Method as per IIHS Regulation. J Inst Eng Ser C, 99(5), 599–606. https://doi.org/10.1007/s40032-017-0365-y
  • Thomas, T., & Tiwari, G. (2019). Energy absorption and in-plane crushing behavior of aluminium reinforced honeycomb. Vacuum, 166, 364–369. https://doi.org/10.1016/j.vacuum.2018.10.057
  • Van Ratingen, M., Williams, A., Lie, A., et al (2016). The European New Car Assessment Programme: A historical review. Chinese J Traumatol - English Ed, 19(2), 63–69. https://doi.org/10.1016/j.cjtee.2015.11.016
  • Wang, T., & Li, Y. (2015). Design and analysis of automotive carbon fiber composite bumper beam based on finite element analysis. Adv Mech Eng, 7(6), 1–12. https://doi.org/10.1177/1687814015589561
  • Xu, S., Beynon, J. H., Ruan, D., & Lu, G. (2012). Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos Struct, 94(8), 2326–2336. https://doi.org/10.1016/j.compstruct.2012.02.024
  • Zhou, Q., & Mayer, R. R. (2016). Characterization of Aluminum Honeycomb Material Failure in Large Deformation Compression, Shear, and Tearing. The Journal of Engineering Materials and Technology, 124. https://doi.org/10.1115/1.1491575