1,335
Views
4
CrossRef citations to date
0
Altmetric
PRODUCTION & MANUFACTURING

Reverse engineering from 3D mesh to ceramic product in the form of miranda kerr tea for one teapot in PT doulton Indonesia

ORCID Icon, , , , , & | (Reviewing editor) show all
Article: 1981522 | Received 13 Apr 2021, Accepted 07 Sep 2021, Published online: 09 Oct 2021

References

  • Andrei, P., Andrei, A., & Adrian, P. (2015). Reverse engineering technique applied for manufacturing thin wall plastic parts. Applied Mechanics and Materials, 772, 212–20. http://dx.doi.org/10.4028/www.scientific.net/AMM.772.212
  • Anggoro, P. W., Anthony, A. A., Bawono, B., Jamari, B. A. P., Tauviqirrahman, M., & Nugroho, A. (2019). CNC milling of EVA foam with varying hardness for custom orthotic shoe insoles and process parameter optimization. Journal of Mechanical Engineering and Sciences, 13(3), 5347–5370. https://doi.org/10.15282/jmes.13.3.2019.10.0436
  • Anggoro, P. W., Bawono, B., & Sujatmiko, I. (2015). Reverse engineering technology in redesign process ceramics: Application for CNN plate. Procedia Manufacturing, 4, 521–527. https://doi.org/10.1016/j.promfg.2015.11.071
  • Anggoro, P. W., Bawono, B., Tauviqirrahman, M., Jamari, J., & Bayuseno, A. P. (2019). Design and manufacturing insole shoes orthotic for optimal surface roughness using CNC milling machine. Journal of Engineering Science and Technology, 14(4), 1799–1819.
  • Anggoro, P. W., Saputra, E., Tauviqirrahman, M., Jamari, J., & Bayuseno, A. P. (2017). A 3dimensional finite element analysis of the insole shoe orthotic for foot deformities. International Journal of Applied Engineering Research, 12(15), 5254–5260.
  • Anggoro, P. W., Tauviqirrahman, M., Jamari, J., Bayuseno, A. P., Bawono, B., & Avellina, M. M. (2018). Computer aided reverse engineering system in the design and production of orthotic insole shoes for patients with diabetes. Cogent Engineering, 5(1), 1–20. https://doi.org/10.1080/23311916.2018.1470916
  • Anggoro, P. W., Tauviqirrahman, M., Jamari, J., Bayuseno, A. P., Wibowo, J., & Saputro, Y. D. (2019). Optimal design ang fabrication of shoe last for ankle foot orthotics for patients with diabetes. international journal of manufacturing. Material and Mechanical Engineering (IJMMME), 9(2), 64–78. http://doi.org/10.4018/ijmmme.2019040104
  • Anggoro, P. W., Yuniarto, T., Tauviqirrahman, M., Jamari, J., Bayuseno, A. P., Purwanto, K. B., & Widyanarka, O. K. W. (2019). Puzzle islamic floral patterns product tiles for wall and ceiling to decorate of al huda mosque indonesia—design, manufacturing, and fabrication. Proceeding of 6th internasional conference and exhibition on sustainable energy and advanced materials, ICE-SEAM 2019, 16-17 October 2019, surakarta, indonesia, lecture note in mechanical engineering.
  • Ashima, R., Haleem, A., Bahl, S., Javaid, M., Mahla, S. K., & Singh, S. (2021). Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0. Materials Today: Proceedings, 45, 5081–5088. https://doi.org/10.1016/j.matpr.2021.01.58
  • Babu, T. S., & Thumbanga, R. D. (2011). Reverse Engineering CAD/CAM & pattern less process applications in casting-A case study. International Journal of Mechanics, 5, 40–47. https://www.naun.org/main/NAUN/mechanics/20-092.pdf
  • Bagci, E. (2009). Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: Three case studies. Advances in Engineering Software, 40(6), 407–418. https://doi.org/10.1016/j.advengsoft.2008.07.003
  • Fatima, S., Haleem, A., Bahl, S., Javaid, M., Mahla, S. K., & Singh, S. (2021). Exploring the significant applications of Internet of Things (IoT) with 3D printing using advanced materials in medical field. Materials Today: Proceedings, 45, 4844–4851. https://doi.org/10.1016/j.matpr.2021.01.305
  • Feng, L., Longstaff, A. P., Fletcher, S., & Myers, A. (2014). Rapid and accurate reverse engineering of geometry based on a multi-sensor system. The International Journal, Advanced Manufacturing Technology, 74(1–4), 369–382. https://doi.org/10.1007/s00170-014-5997-y
  • Fergiawan, P. K., Anggoro, P. W., Yuniarto, T., Purwanto, K. B., & Widyanarka, O. K. W. (2019). Ceramic jewelry with texture and ornament islamic pattern and batik indonesia – design, manufacturing, and fabrication. Proceeding of 6th International Conference and exhibition on sustainable energy and advanced materials, ICE-SEAM 2019, 16-17 October 2019, surakarta, indonesia, lecture note in mechanical engineering.
  • Haleem, A., & Javaid, M. (2019a). 3D scanning applications in medical field: A literature-based review. Clinical Epidemiology and Global Health, 7(2), 199–210. https://doi.org/10.1016/j.cegh.2018.05.006
  • Haleem, A., & Javaid, M. (2019b). Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: An overview. Clinical Epidemiology and Global Health, 7(4), 571–577. https://doi.org/10.1016/j.cegh.2019.01.003
  • Haleem, A., & Javaid, M. (2020). 3D printed medical parts with different materials using additive manufacturing. Clinical Epidemiology and Global Health, 8(1), 215–223. https://doi.org/10.1016/j.cegh.2019.08.002
  • Haleem, A., Javaid, M., Khan, R. H., & Suman, R. (2020). 3D printing applications in bone tissue engineering. Journal of Clinical Orthopaedics and Trauma; 11: S118eS124, 11, S118–S124. https://doi.org/10.1016/j.jcot.2019.12.002
  • Huson, D., & Hoskins, S. (2014). 3D printed ceramics for tableware, artists/designers and specialist application. Centre for Fine Print Research, University of the West of England. Switzerland: Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.608.351
  • Hussain, M. M., Sambasiva Rao, C. H., & Prasad, K. E. (2008). Reverse engineering: Point cloud generation with CMM for part modeling and error analysis. ARPN Journal of Engineering and Applied Sciences, 3(4), 37–40. http://www.arpnjournals.com/jeas/research_papers/rp_2008/jeas_0808_113.pdf
  • Javaid, M., & Haleem, A. (2018a). Additive manufacturing applications in orthopaedics: A review. Journal of Clinical Orthopaedics and Trauma, 9(3), 202–206. https://doi.org/10.1016/j.jcot.2018.04.008
  • Javaid, M., & Haleem, A. (2018b). Additive manufacturing applications in medical cases: A literature based review. Alexandria Journal of Medicine, 54(4), 411–422. https://doi.org/10.1016/j.ajme.2017.09.003
  • Javaid, M., & Haleem, A. (2020). 3D printed tissue and organ using additive manufacturing: An overview. Clinical Epidemiology and Global Health, 8(2), 586–594. https://doi.org/10.1016/j.cegh.2019.12.008
  • Javaida, M., & Hal, A. (2019). Current status and applications of additive manufacturing in dentistry: A literature-based review. Journal of Oral Biology and Craniofacial Research, 9(3), 179–185. https://doi.org/10.1016/j.jobcr.2019.04.004
  • Kucklick, T. (2006). Reverse engineering in medical device design . The Medical Device R&D Handbook;.
  • López, C. I., Pinillos, J. C., & Juan, C. (2014). Moreno. Comparison between two design methods implants, based on reverse engineering, design and engineering technologies, BIOCAD/CAD/CAE. Ingeniería y Competitividad, 16(1), 61–68. https://www.researchgate.net/publication/317499786_Comparison_between_two_design_methods_implants_based_on_reverse_engineering_design_and_engineering_technologies_BIOCADCADCAE
  • Majstorovic, V., Trajanovic, V., Vitkovic, N., & Stojkovic, M. (2013). Reverse engineering of human bones by using method of anatomical features. CIRP Annals – Manufacturing Technology, 62(1), 167–170. https://doi.org/10.1016/j.cirp.2013.03.081
  • Oancea, G., Ivan, N. V., & Pescaru, R. (2013). Computer aided reverse engineering system used for customized products. Annals of MTeM for 2013 & Proceedings of the 11th International MTeM Conference Published by MTeM 2013, Cluj-Napoca, Romania, Editor N. Bâlc. THE 11th INTERNATIONAL MTeM CONFERENCE, 17th −19th OCTOBER 2013. Pp 181–186.
  • Singare, S., Dichen, L., Bingheng, L., Yanpu, L., Zhenyu, G., & Yaxiong, L. (2004). Design and fabrication of custom mandible titanium tray based on rapid prototyping. Medical Engineering & Physics, 26(8), 671–676. https://doi.org/10.1016/j.medengphy.2004.06.001
  • Sokovic, M., & Kopac, J. (2005). RE (reverse engineering) as necessary phase by rapid product development. Journal of Materials Processing Technology, 175(1–3), 398–403. https://doi.org/10.1016/j.jmatprotec.2005.04.047
  • Ul Haq, M. I., Khuroo, S., Raina, A., Khajuria, S., Javaid, M., Ul Haq, M. F., & Haleem, A. (2020). 3D printing for development of medical equipment amidst coronavirus (COVID-19) pandemic—review and advancements. Research on Biomedical. Engineering. Published on line” 1 October. https://doi.org/10.1007/s42600-020-00098-0
  • Vinesh, R., & Kiran, F. J. (2008). Reverse engineering – An industrial perspective (V. Raja & K. J. Fernandes, Eds.). London: Springer-Verlag.
  • Wang, W. (2008). Application of reverse engineering in manufacturing industry. In Departement of engineering technology universitas of massachusetts lowell. MA, USA.
  • Wego, W. (2010). Reverse Engineering: Technology of REinvention. CRC Press, Taylor & Francis;.
  • Xia, Z. (2014). Application Of Reverse Engineering Based On Computer In Product Design. International Journal of Multimedia and Ubiquitous Engineering, 9(5), 343–354. https://doi.org/10.14257/ijmue.2014.9.5.35
  • Ye, X. Z., Peng, W., Chen, Z. Y., & Cai, Y. Y. (2004). Today’s students, tomorrow’s engineers — An industrial perspective on cad education. Computer-Aided Design, 36(14), 1451–1460. https://doi.org/10.1016/j.cad.2003.11.006