1,226
Views
0
CrossRef citations to date
0
Altmetric
COMPUTER SCIENCE

Numerical simulation of inverse geochemistry problems by regularizing algorithms

, , , ORCID Icon & | (Reviewing editor)
Article: 2003522 | Received 07 Apr 2021, Accepted 02 Nov 2021, Published online: 04 Jan 2022

References

  • Bahmanpour, M, Kajani, M.T., & Maleki, M. (2019). Solving Fredholm integral equations of the first kind using Muntz wavelets. Applied Numerical Vathematics, 143, 159–21. https://doi.org/10.1016/j.apnum.2019.04.007
  • Daugavet, I. K. The theory of approximate methods. Linear equations. – 2 Revised and enlarged (St. Petersburg: BHV – Peterburg), 2006. 288 p. (in Russian).
  • Didgar, M., Vahidi, A., & Biazar, J. (2019). A pplication of Taylor expansion for fredholm integral equations of the first kind. Journal of Mathematics, 51(5), 1–14.
  • Dmitriev, V. I. (2017). On the two-dimensional inverse problem of magnetotelluric sounding of an inhomogeneous medium. Applied Mathematics and Computer Science, 56: 5–17 https://cs.msu.ru/sites/cmc/files/docs/dmitriev_22.pdf. (in Russian).
  • Dyachkov, B. A., Gavrilenko, O. D., & Bubniak, A. N. (2017). Current state and problems of regional geological study of the territory of East Kazakhstan. Geology and Subsurface Protection, 3 (64), 31–37 https://elibrary.ru/item.asp?id=32327588 . in Russian
  • Hosseinzadeh, H., Dehghan, M., & Sedaghatjoo, Z. (2020). The stability study of numerical solution of Fredholm integral equations of the first kind with emphasis on its application in boundary elements method. Applied Numerical Mathematics, 158, 134–151. https://doi.org/10.1016/j.apnum.2020.07.011
  • Kabanikhin, S. I., & Shishlenin, M. A. (2019). Theory and numerical methods for solving inverse and ill-posed problems. Journal of Inverse and Ill-Posed Problems, 27(3), 453–456. https://doi.org/10.1515/jiip-2019-5001
  • Kochnev, А. P., & Yurenkov, Y. G. Basics of predictive search models typing. . 2014. No. 1 44 ( 44). P. 74–80 (in Russian).
  • Kuzmina, O. N., Dyachkov, B. A., Vladimirov, A. G., Kirillov, M. B., & Redin, Y. O. (2013). Geology and mineralogy of the gold-bearing periods of East Kazakhstan. Geology and Geophysics, 54 (12), 1889–1904 . in Russian
  • Ma, Y., Huang, J., & Li, H. (2015). A novel numerical method of two-dimensional Fredholm integral equations of the second kind. Mathematical Problems in Engineering, 2015(ID 624013), 9. https://doi.org/10.1155/2015/625013
  • Magnetotelluric sensing method 2005 . URL:http://nw-geo.ru/geophysics/tech/amt/
  • Maleknejad, K., & Saeedipoor, E. (2017). An efficient based on hybrid functions for Fredholm integral equation of the first kind with convergence analysis. Applied Mathematics and Computation, 304, 93–102. http://dx.doi.org/10.1016/j.amc.2017.01.013
  • Marchuk, G. I. Conjugate equations and their applications // Proceedings of the institute of mathematics and mechanics N.N. Krasovskii Institute of Mathematics and Mechanics, Ekaterinburg, Ural Branch of the Russian Academy of Sciences, 2006, Vol. 12, No. 1, P. 184–195 (in Russian).
  • Mohammad, M., & Cattani, C. (2020). A collocation method via the quasi-affine biorthogonal systems for solving weakly singular type of Volterra-Fredholm integral equations. Alexandria Engineering Journal, 59(4), 2181–2191. https://doi.org/10.1016/j.aej.2020.01.046
  • Mohammad, M., & Trounev, A. (2020). Fractional nonlinear Volterra-Fredholm integral equations involving Atangana-Baleanu fractional derivative: Framelet applications. Advances in Difference Equations, 2020(1), 618. https://doi.org/10.1186/s13662-020-03042-9
  • Mohammad, M. (2019). A numerical solution of Fredholm integral equations of the second kimd based on tight framelets generated by the oblique extension principle. Journal Symmetry, 11(7), 854. https://doi.org/10.3390/sym11070854
  • Shiri, B., Guo-Cheng, W., & Baleanu, D. (2020). Collocation methods for terminal value problems of tempered fractional differential equations. Applied Numerical Mathematics, 156, 385–395. https://doi.org/10.1016/j.apnum.2020.05.007
  • Shiri, B., Perfilieva, I., & Alijani, Z. (2021). Classical approximation for fuzzy Fredholm integral equation. Fuzzy Sets and Systems, 404, 159–177. https://doi.org/10.1016/j.fss.2020.03.023
  • Shokin, Y. I., & Potapov, V. P. (2015). GIS today: Status, prospects, solutions. Computing technologies, 20(5), 175–213. (in Russian).
  • Spichak, V. V. (2005). Methodology of neural network inversion of geophysical data. Earth Physics, 3: 71–85. (in Russian).
  • Temirbekova, L. N. Processing of big data in the detection of geochemical anomalies of rare-earth metal deposits. AIP conference proceeding 4th International Conference on Analysis and Applied Mathematics, ICAAM 2018; Mersin 10; Turkey; 6 September 2018 до 9 September 2018;. 2018. Vol. 1997, No. 020072 doi:10.1063/1.5049066.
  • Temirbekova, L. N., & Dairbaeva, G. (2013). Gradient and direct method of solving Gelfand-Levitan integral equation. Applied and Computational Mathematics, 12(2), 234–246 .
  • Tikhonov, A. N. , 1999 Mathematical Geophysics. (Moscow: Joint Institute of Earth Physics, Russian Academy of Sciences) . 476 p. (in Russian)
  • Verlan, A. F., & Sizikov, V. S. . . Integral equations: methods, algorithms, programs. Reference manual. (Kiev: Naukova Dumka), 1986, 537 p. (in Russian).
  • Yuan, D., Lu, S., Li, D., & Zhang, X. (2019). Graph refining via iterative regularization framework. SN Applied Sciences, 1(387), 1–10. https://doi.org/10.1007/s42452-019-0412-9
  • Yuan, D., & Zhang, X. (2019). An overview of numerical methods for the first kind Fredholm integral equation. SN Applied Sciences, 1(1178), 1–12. https://doi.org/10.1007/s42452-019-1228-3