1,468
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Dynamic analysis and frequency response of cylindrical roller bearing of an airflow root blower

, & | (Reviewing editor)
Article: 2021837 | Received 28 Jun 2021, Accepted 10 Dec 2021, Published online: 01 Feb 2022

References

  • Adman, A. A., & Yusof, N. F. M. (2020). Analysis of contact stress and vibration of rolling element bearing. Materials Science and Engineering, 815 , 01/012001. IOP Publishing.
  • Autodesk. (2018). Frequency Response Analysis Retrieved April 22, 2021, from https://knowledge.autodesk.com/support/inventor-nastran/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/NINCAD-SelfTraining/files/GUID-FCA4E4B5-1A53-480E-A43A-A208E8F3C97E-htm.html#:~:text=Modal%20Frequency%20Response%20Analysis%2C%20which,retained%2C%20reduce%20the%20problem%20size
  • Avitabile, P. (2001). Experimental modal analysis. Sound and Vibration, 351, 20–22. https://classes.engineering.wustl.edu/2009/fall/mase431/PDF/modalana.pdf
  • Booysen, C. (2014). Fatigue life prediction of steam turbine blades during start-up operation using probabilistic concepts. Doctoral dissertation, University of Pretoria. https://www.up.ac.za/media/shared/120/ZP_Files/Students%20presentations/public-defence-c-booysen-2014-07-25-final.zp42405.pdf
  • Chula. (2017). Contact stresses. http://pioneer.netserv.chula.ac.th/~ltachai/tribology/tribo_ch07.pdf
  • Deng, S. E., Jia, Q. Y., & Xue, J. X. (2014). Design principles of rolling bearings. Standards Press of China.
  • Dulinska, J. M., & Szczerba, R. (2013). Simulation of dynamic behaviour of RC bridge with steel-laminated elastomeric bearings under high-energy mining tremors. Key Engineering Materials, 531, Trans Tech Publ, 662–667. https://doi.org/10.4028/www.scientific.net/KEM.531-532.662:
  • Harris, T. A., & Kotzalas, M. N. (2006). Advanced concepts of bearing technology: Rolling bearing analysis. CRC press.
  • Hlebanja, G., Hriberšek, M., Erjavec, M., & Kulovec, S. (2019). Durability Investigation of plastic gears. EDP Sciences. https://doi.org/10.1051/matecconf/201928702003
  • Jovanović, J. D., & Tomović, R. N. (2014). Analysis of dynamic behaviour of rotor-bearing system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, United Kingdom, 228, 2141–2161. https://doi.org10.1177/0954406213516439
  • Kang, J., Lu, Y., Zhang, Y., Liu, C., Li, S., & Müller, N. (2019). Investigation on the skidding dynamic response of rolling bearing with local defect under elastohydrodynamic lubrication. Mechanics & Industry, 20(6), 615. https://doi.org/10.1051/meca/2019054
  • Kumar, P. M., & Rao, C. J. (2015). Structural and thermal analysis on a tapered roller bearing. IJISET-International Journal of Innovative Science, Engineering & Technology, 2(1), 502–511. http://ijiset.com/vol2/v2s1/IJISET_V2_I1_71.pdf
  • Lieven, N. A. J., & Ewins, D. J. (1988). Spatial correlation of mode shapes, the coordinate modal assurance criterion (COMAC). 690–695.
  • Ma, F., Li, Z., Qiu, S., Wu, B., & An, Q. (2016). Transient thermal analysis of grease-lubricated spherical roller bearings. Tribology International, 93(1), 115–123. https://doi.org/10.1016/j.triboint.2015.09.004
  • Mcfadden, P., & Smith, J. (1984). Model for the vibration produced by a single point defect in a rolling element bearing. Journal of Sound and Vibration, 96(1), 69–82. https://doi.org/10.1016/0022-460X(84)90595-9
  • Niu, L., Cao, H., He, Z., & Li, Y. (2015). A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects. Journal of Sound and Vibration, 357(1), 207–232. https://doi.org/10.1016/j.jsv.2015.08.002
  • Niu, L., Cao, H., He, Z., & Li, Y. (2016). An investigation on the occurrence of stable cage whirl motions in ball bearings based on dynamic simulations. Tribology International, 103(1), 12–24. https://doi.org/10.1016/j.triboint.2016.06.026
  • Patra, P., Saran, V. H., & Harsha, S. (2019). Non-linear dynamic response analysis of cylindrical roller bearings due to rotational speed. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, United Kigdom, 233, 379–390. https://doi.org/10.1177/1464419318762678
  • Petersen, D., Howard, C., & Prime, Z. (2015). Varying stiffness and load distributions in defective ball bearings: Analytical formulation and application to defect size estimation. Journal of Sound and Vibration, 337(1), 284–300. https://doi.org/10.1016/j.jsv.2014.10.004
  • Pouly, F., Changenet, C., Ville, F., Velex, P., & Damiens, B. (2010). Power loss predictions in high-speed rolling element bearings using thermal networks. Tribology Transactions, 53(6), 957–967. https://doi.org/10.1080/10402004.2010.512117
  • Qian, W., & Jacobs, G. (2014 ()). Dynamic simulation of cylindrical roller bearings. (Doctoral dissertation, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen).
  • Salifu, S., Desai, D., Fameso, F., Ogunbiyi, O., Jeje, S., & Rominiyi, A. (2020a). Thermo-mechanical analysis of bolted X20 steam pipe-flange assembly. Materials Today: Proceedings. South Africa: Elsevier. https://doi.org/10.1016/j.matpr.2020.04.882
  • Salifu, S., Desai, D., Kok, S., & Ogunbiyi, O. (2019). Thermo-mechanical stress simulation of unconstrained region of straight X20 steam pipe. Procedia Manufacturing, 35(1), 1330–1336. https://doi.org/10.1016/j.promfg.2019.05.021
  • Salifu, S., Desai, D., & S, K. (2020b). Comparative evaluation of creep response of X20 and P91 steam piping networks in operation. The International Journal of Advanced Manufacturing Technology, 109(7–8), 1987–1996. https://doi.org/10.1007/s00170-020-05727-7
  • Salifu, S., Desai, D., & S, K. (2020c). Creep–fatigue interaction of P91 steam piping subjected to typical start-up and shutdown cycles. Journal of Failure Analysis and Prevention, 20(3), 1055–1064. https://doi.org/10.1007/s11668-020-00908-8
  • Salifu, S., Desai, D., & S, K. (2020d). Numerical investigation of creep-fatigue interaction of straight P91 steam pipe subjected to start-up and shutdown cycles. Materials Today: Proceedings. South Africa: Elsevier.
  • Salifu, S., Desai, D., & S, K. (2020e). Numerical simulation and creep-life prediction of X20 steam piping. Materials Today: Proceedings. South Africa: Elsevier.
  • Salifu, S., Desai, D., & S, K. (2020f). Prediction and comparison of creep behavior of X20 steam plant piping network with different phenomenological creep models. Journal of Materials Engineering and Performance, (11), 1–14. https://doi.org/10.1007/s11665-020-05235-5
  • Sehgal, R., Gandhi, O. P., & Angra, S. (2000). Reliability evaluation and selection of rolling element bearings. Reliability Engineering & System Safety, 68(1), 39–52. https://doi.org/10.1016/S0951-8320(99)00081-2
  • Sharma, A., Amarnath, M., & Kankar, P. K. (2014). Effect of varying the number of rollers on dynamics of a cylindrical roller bearing. American Society of Mechanical Engineers.
  • Sharma, A., Amarnath, M., & Kankar, P. K. (2015). Effect of unbalanced rotor on the dynamics of cylindrical roller bearings. Springer.
  • Sharma, A., Amarnath, M., & Kankar, P. K. (2019). Nonlinear dynamic analysis of defective rolling element bearing using Higuchi’s fractal dimension. Sādhanā, 44(1), 1–29. https://doi.org/10.1007/s12046-019-1060-x
  • Sharma, A., Kankar, P. K., & Amarnath, M. (2020). Investigations on nonlinearity for health monitoring of rotor bearing system. Reliability and Risk Assessment in Engineering, (1), 241. https://books.google.co.za/books?hl=en&lr=&id=WpbiDwAAQBAJ&oi=fnd&pg=PA241&dq=Sharma,+A.,+Kankar,+P.+K.,+%26+Amarnath,+M.+(2020).+Investigations+on+nonlinearity+for+health+monitoring+of+rotor+bearing+system.+Reliability+and+Risk+Assessment+in+Engineering+1+,+241&ots=DLsJAct8Zq&sig=8P90m0n0Q4-SJFsy5TpRKnq5VPo#v=onepage&q=Sharma%2C%20A.%2C%20Kankar%2C%20P.%20K.%2C%20%26%20Amarnath%2C%20M.%20(2020).%20Investigations%20on%20nonlinearity%20for%20health%20monitoring%20of%20rotor%20bearing%20system.%20Reliability%20and%20Risk%20Assessment%20in%20Engineering%201%20%2C%20241&f=false
  • Sharma, A., Upadhyay, N., Kankar, P. K., & Amarnath, M. (2018). Nonlinear dynamic investigations on rolling element bearings: A review. Advances in Mechanical Engineering, 10(3), 1687814018764148. https://doi.org/10.1177/1687814018764148
  • Su, Y. T., & Lin, S. J. (1992). On initial fault detection of a tapered roller bearing: Frequency domain analysis. Journal of Sound and Vibration, 155(1), 75–84. https://doi.org/10.1016/0022-460X(92)90646-F
  • Talai, S. M. (2016). Prediction of dynamic behaviour of simplified turbine blade assemblies using infrared thermography. Tshwane University of Technology.
  • Upadhyay, R. K., Kumaraswamidhas, L. A., & Azam, M. S. (2013). Rolling element bearing failure analysis: A case study. Case Studies in Engineering Failure Analysis, 1(1), 15–17. https://doi.org/10.1016/j.csefa.2012.11.003
  • Venkatesh, K., & Prasad, K. R. (2017). Finite element solution for thermal analysis of NiTiNOL-60. Ball Bearing.
  • Verma, S. K. (2014). Numerical investigation on the performance of roots blower varying rotor profile [ Doctoral dissertation].
  • Wang, F., Jing, M., Yi, J., Dong, G., Liu, H., & Ji, B. (2015). Dynamic modelling for vibration analysis of a cylindrical roller bearing due to localized defects on raceways. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 229, 39–64. United Kingdom: SagePub.
  • Wang, L. Q. (2013). Design and numerical analysis of rolling element bearing for extreme applications. Harbin Institute of Technology Press.
  • Wu, Z., & Zhang, J. C. (2016). Finite element analysis and experimental study on failure rolling bearing. Key Engineering Materials, 693(1), 332–339. Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/KEM.693.332
  • Yan, P., Yan, C., Wang, K., Wang, F., & Wu, L. (2020). 5-DOF dynamic modeling of rolling bearing with local defect considering comprehensive stiffness under isothermal elastohydrodynamic lubrication. Shock and Vibration, 1(1), 1–15. https://doi.org/10.1155/2020/9310278
  • Zhu, X. (2012). Tutorial on hertz contact stress. OPTI, 521(1), 1–8. https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/OPTI-521-Tutorial-on-Hertz-contact-stress-Xiaoyin-Zhu.pdf