5,546
Views
2
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Evolution of different designs and wear studies in total hip prosthesis using finite element analysis: A review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 2027081 | Received 11 Oct 2021, Accepted 04 Jan 2022, Published online: 30 Jan 2022

References

  • Affatato, S., Bersaglia, G., Rocchi, M., Taddei, P., Fagnano, C., & Toni, A. (2005). Wear behaviour of cross-linked polyethylene assessed in vitro under severe conditions. Biomaterials, 26(16), 3259–30. https://doi.org/10.1016/j.biomaterials.2004.07.070
  • Affatato, S., Zavalloni, M., Spinelli, M., Costa, L., Bracco, P., & Viceconti, M. (2010). Long-term in-vitro wear performance of an innovative thermo-compressed cross-linked polyethylene. Tribology International, 43(1–2), 22–28. https://doi.org/10.1016/j.triboint.2009.04.049
  • Affatato, S., Zavalloni, M., Taddei, P., Di Foggia, M., Fagnano, C., & Viceconti, M. (2008). Comparative study on the wear behaviour of different conventional and cross-linked polyethylenes for total hip replacement. Tribology International, 41(8), 813–822. https://doi.org/10.1016/j.triboint.2008.02.006
  • Alvarez-Vera, M., Contreras-Hernandez, G. R., Affatato, S., & Hernandez-Rodriguez, M. A. L. (2014). A novel total hip resurfacing design with improved range of motion and edge-load contact stress. Materials and Design, 55(1), 690–698. https://doi.org/10.1016/j.matdes.2013.10.031
  • Amaral, M., Maru, M. M., Rodrigues, S. P., Gouvêa, C. P., Trommer, R. M., Oliveira, F. J., Achete, C. A., & Silva, R. F. (2014). Extremely low wear rates in hip joint bearings coated with nanocrystalline diamond. Tribology International, 89(1), 72–77. https://doi.org/10.1016/j.triboint.2014.12.008
  • Ashkanfar, A., Langton, D. J., & Joyce, T. J. (2017). A large taper mismatch is one of the key factors behind high wear rates and failure at the taper junction of total hip replacements: A finite element wear analysis. Journal of the Mechanical Behavior of Biomedical Materials, 69(1), 257–266. https://doi.org/10.1016/j.jmbbm.2017.01.018
  • Babić, M., Verić, O., Božić, Ž., & Sušić, A. (2020). Finite element modelling and fatigue life assessment of a cemented total hip prosthesis based on 3D scanning. Engineering Failure Analysis, 113(February), 104536. https://doi.org/10.1016/j.engfailanal.2020.104536
  • Bae, J. Y., Farooque, U., Lee, K. W., Kim, G. H., Jeon, I., & Yoon, T. R. (2011). Development of hip joint prostheses with modular stems. CAD Computer Aided Design, 43(9), 1173–1180. https://doi.org/10.1016/j.cad.2011.05.004
  • Baharuddin, M. Y., Salleh, S. H., Zulkifly, A. H., Lee, M. H., Noor, A. M., Harris, A. R., Majid, N. A., & Abd Kader, A. S. (2014). Design process of cementless femoral stem using a nonlinear three dimensional finite element analysis. BMC Musculoskeletal Disorders, 15(1), 1–17. https://doi.org/10.1186/1471-2474-15-30
  • Bashiri, A., Sallam, H. E. M., & Abd-Elhady, A. A. (2020). Progressive failure analysis of a hip joint based on extended finite element method. Engineering Failure Analysis, 117(March), 104829. https://doi.org/10.1016/j.engfailanal.2020.104829
  • Bechstedt, M., Gustafson, J. A., Mell, S. P., Gührs, J., Morlock, M. M., Levine, B. R., & Lundberg, H. J. (2020). Contact conditions for total hip head-neck modular taper junctions with microgrooved stem tapers. Journal of Biomechanics, xxxx(103), 109689. https://doi.org/10.1016/j.jbiomech.2020.109689
  • Bevill, S. L., Bevill, G. R., Penmetsa, J. R., Petrella, A. J., & Rullkoetter, P. J. (2005). Finite element simulation of early creep and wear in total hip arthroplasty. Journal of Biomechanics, 38(12), 2365–2374. https://doi.org/10.1016/j.jbiomech.2004.10.022
  • Bhalekar, R. M., Smith, S. L., & Joyce, T. J. (2019). Wear at the taper-trunnion junction of contemporary ceramic-on-ceramic hips shown in a multistation hip simulator. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 107(4), 1199–1209. https://doi.org/10.1002/jbm.b.34213
  • Bigsby, R. J. A., Hardaker, C. S., & Fisher, J. (1997). Wear of ultra-high molecular weight polyethylene acetabular cups in a physiological hip joint simulator in the anatomical position using bovine serum as a lubricant. Proc Inst Mech Eng H, 211(3), 265–269. https://doi.org/10.1243/0954411971534377
  • Bitter, T., Khan, I., Marriott, T., Lovelady, E., Verdonschot, N., & Janssen, D. (2018). Finite element wear prediction using adaptive meshing at the modular taper interface of hip implants. Journal of the Mechanical Behavior of Biomedical Materials, 77(May 2017), 616–623. https://doi.org/10.1016/j.jmbbm.2017.10.032
  • Brittain, R., Young, E., Mccormack, V., & Swanson, M. (2019). 16th Annual Report 2019:National Joint Registry for England, Wales, Northern Ireland and the Isle Of Man, London. December 2018. https://www.hqip.org.uk/wp-content/uploads/2018/11/NJR-15th-Annual-Report-2018.pdf
  • Brockett, C., Williams, S., Jin, Z., Isaac, G., & Fisher, J. (2007). Friction of total hip replacements with different bearings and loading conditions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B(2), 508–515. https://doi.org/10.1002/jbm.b.30691
  • Brown, T. D., Stewart, K. J., Nieman, J. C., Pedersen, D. R., & Callaghan, J. J. (2002). Local head roughening as a factor contributing to variability of total hip wear: A finite element analysis. Journal of Biomechanical Engineering, 124(6), 691–698. https://doi.org/10.1115/1.1517275
  • Burger, N. D. L., de Vaal, P. L., & Meyer, J. P. (2007). Failure analysis on retrieved ultra high molecular weight polyethylene (UHMWPE) acetabular cups. Engineering Failure Analysis, 14(7), 1329–1345. https://doi.org/10.1016/j.engfailanal.2006.11.005
  • Calais-Germain, B. (2004). Anatomy of movement. Chemistry & Biodiverstiy. http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract
  • Çelik, T., & Kişioğlu, Y. (2019). Evaluation of new hip prosthesis design with finite element analysis. Australasian Physical and Engineering Sciences in Medicine, 42(4), 1033–1038. https://doi.org/10.1007/s13246-019-00802-0
  • Chethan, K. N., Bhat, S. N., Zuber, M., & Shenoy, S. B. (2019). Patient-specific static structural analysis of femur bone of different lengths. The Open Biomedical Engineering Journal, 12(1), 108–114. https://doi.org/10.2174/1874120701812010108
  • Chethan, K. N., Ogulcan, G., Bhat, N. S., Zuber, M., & Shenoy, B. S. (2020). Wear estimation of trapezoidal and circular shaped hip implants along with varying taper trunnion radiuses using finite element method. Computer Methods and Programs in Biomedicine, 196(1), 105597. https://doi.org/10.1016/j.cmpb.2020.105597
  • Chethan, K. N., Satish Shenoy, B., & Shyamasunder Bhat, N. (2018). Role of different orthopedic biomaterials on wear of hip joint prosthesis: A review. Materials Today: Proceedings, 5(10), 20827–20836. https://doi.org/10.1016/j.matpr.2018.06.468
  • Chethan, K. N., Shyamasunder Bhat, N., & Satish Shenoy, B. (2018). Biomechanics of hip joint: A systematic review. International Journal of Engineering and Technology(UAE), 7(3), 1672–1676. https://doi.org/10.14419/ijet.v7i3.15231
  • Chethan, K. N., Shyamasunder Bhat, N., Zuber, M., & Satish Shenoy, B. (2019). Finite element analysis of different hip implant designs along with femur under static loading conditions. Journal of Biomedical Physics and Engineering, 9(5), 507–516. https://doi.org/10.31661/jbpe.v0i0.1210
  • Chethan, K. N., Shyamasunder Bhat, N., Zuber, M., & Satish Shenoy, B. (2021). Finite element analysis of hip implant with varying in taper neck lengths under static loading conditions. Computer Methods and Programs in Biomedicine, 208(1), 106273. https://doi.org/10.1016/j.cmpb.2021.106273
  • Chethan, K. N., Zuber, M., Bhat, S. N., & Shenoy, S. B. (2019). Comparative study of femur bone having different boundary conditions and bone structure using finite element method. The Open Biomedical Engineering Journal, 12(1), 115–134. https://doi.org/10.2174/1874120701812010115
  • Chillag, K. J. (2016). Giants of orthopaedic surgery: Austin T. Moore MD. Clinical Orthopaedics and Related Research, 474(12), 2606–2610. https://doi.org/10.1007/s11999-016-5116-5
  • Cilingir, A. C. (2010). Finite element analysis of the contact mechanics of ceramic-on-ceramic hip resurfacing prostheses. Journal of Bionic Engineering, 7(3), 244–253. https://doi.org/10.1016/S1672-6529(10)60247-8
  • Courpied, J. P., & Caton, J. H. (2011). Total hip arthroplasty, state of the art for the 21st century. International Orthopaedics, 35(2), 149–150. https://doi.org/10.1007/s00264-011-1207-9
  • Cross, M. B., Nam, D., & Mayman, D. J. (2012). Ideal femoral head size in total hip arthroplasty balances stability and volumetric wear. HSS Journal®: The Musculoskeletal Journal of Hospital for Special Surgery, 8, 270–274. https://doi.org/10.1007/s11420-012-9287-7
  • Culliford, D., Maskell, J., Judge, A., Cooper, C., Prieto-Alhambra, D., & Arden, N. K. (2015). Future projections of total hip and knee arthroplasty in the UK: Results from the UK clinical practice research datalink. Osteoarthritis and Cartilage, 23(4), 594–600. https://doi.org/10.1016/j.joca.2014.12.022
  • Damm, P., Bender, A., Duda, G., & Bergmann, G. (2017). In vivo measured joint friction in hip implants during walking after a short rest. PLoS ONE, 12(3), 1–14. https://doi.org/10.1371/journal.pone.0174788
  • Darwich, A., Nazha, H., & Abbas, W. (2019). Numerical study of stress shielding evaluation of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials. Biomedical Research, 30(1), 169–174. https://doi.org/10.35841/biomedicalresearch.30-18-1048
  • Dyrkacz, R. M. R., Brandt, J. M., Morrison, J. B., O’ Brien, S. T., Ojo, O. A., Turgeon, T. R., & Wyss, U. P. (2014). Finite element analysis of the head-neck taper interface of modular hip prostheses. Tribology International, 91(1), 206–213. https://doi.org/10.1016/j.triboint.2015.01.016
  • Elkins, J. M., Callaghan, J. J., & Brown, T. D. (2014). Stability and trunnion wear potential in large-diameter metal-on-metal total hips: A finite element analysis. Clinical Orthopaedics and Related Research, 472(2), 529–542. https://doi.org/10.1007/s11999-013-3244-8
  • Elkins, J. M., O’Brien, M. K., Stroud, N. J., Pedersen, D. R., Callaghan, J. J., & Brown, T. D. (2011). Hard-on-hard total hip impingement causes extreme contact stress concentrations. Clinical Orthopaedics and Related Research, 469(2), 454–463. https://doi.org/10.1007/s11999-010-1632-x
  • English, R., Ashkanfar, A., & Rothwell, G. (2015). A computational approach to fretting wear prediction at the head-stem taper junction of total hip replacements. Wear, 338– 339(1), 210–220. https://doi.org/10.1016/j.wear.2015.06.016
  • Essner, A., Sutton, K., & Wang, A. (2005). Hip simulator wear comparison of metal-on-metal, ceramic-on-ceramic and crosslinked UHMWPE bearings. Wear, 259(7–12), 992–995. https://doi.org/10.1016/j.wear.2005.02.104
  • Evans, J. T., Evans, J. P., Walker, R. W., Blom, A. W., Whitehouse, M. R., & Sayers, A. (2019). How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. The Lancet, 393(10172), 647–654. https://doi.org/10.1016/S0140-6736(18)31665-9
  • Fallahnezhad, K., Oskouei, R. H., Badnava, H., & Taylor, M. (2017). An adaptive finite element simulation of fretting wear damage at the head-neck taper junction of total hip replacement: The role of taper angle mismatch. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 58–67. https://doi.org/10.1016/j.jmbbm.2017.07.003
  • Fialho, J. C., Fernandes, P. R., Eça, L., & Folgado, J. (2007). Computational hip joint simulator for wear and heat generation. Journal of Biomechanics, 40(11), 2358–2366. https://doi.org/10.1016/j.jbiomech.2006.12.005
  • Firkins, P. J., Tipper, J. L., Saadatzadeh, M. R., Ingham, E., Stone, M. H., Farrar, R., & Fisher, J. (2001). Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Bio-Medical Materials and Engineering, 11(2), 143–157.
  • Fisher, J., Hu, X. Q., Tipper, J. L., Stewart, T. D., Williams, S., Stone, M. H., Davies, C., Hatto, P., Bolton, J., Riley, M., Hardaker, C., Isaac, G. H., Berry, G., & Ingham, E. (2002). An in vitro study of the reduction in wear of metal-on-metal hip prostheses using surface-engineered femoral heads. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 216(4), 219–230. https://doi.org/10.1243/09544110260138709
  • Goldsmith, A. A., Dowson, D., Isaac, G. H., & Lancaster, J. G. (2000). A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 214(1), 39–47. https://doi.org/10.1243/0954411001535228
  • Gomez, P. F., & Morcuende, J. A. (2005). A historical and economic perspective on Sir John Charnley, Chas F. Thackray Limited, and the early arthoplasty industry. The Iowa Orthopaedic Journal, 25, 30–37.
  • Goreham-Voss, C. M., Hyde, P. J., Hall, R. M., Fisher, J., & Brown, T. D. (2010). Cross-shear implementation in sliding-distance-coupled finite element analysis of wear in metal-on-polyethylene total joint arthroplasty: Intervertebral total disc replacement as an illustrative application. Journal of Biomechanics, 43(9), 1674–1681. https://doi.org/10.1016/j.jbiomech.2010.03.003
  • Grandjean, J., Le Goic, G., Favreliere, H., Ledoux, Y., Samper, S., Formosa, F., Devun, L., & Gradel, T. (2012). Multi-scalar analysis of hip implant components using modal decomposition. Measurement Science and Technology, 23(12), 125702. https://doi.org/10.1088/0957-0233/23/12/125702
  • Gray, H. (1960). Gray’s Anatomy. The Anatomical Record, 136(4), 505. https://doi.org/10.1002/ar.1091360410
  • Gregson, P. J. (1994). Titanium induced or by motion between alloys cobalt-chrome a metal implant resistance reported and cortical. Journal of Biomedical Materials Research, 76(5), 1–7.
  • Griza, S., Reis, M., Reboh, Y., Reguly, A., & Strohaecker, T. R. (2008). Failure analysis of uncemented total hip stem due to microstructure and neck stress riser. Engineering Failure Analysis, 15(7), 981–988. https://doi.org/10.1016/j.engfailanal.2007.10.012
  • Gross, S., & Abel, E. W. (2001). A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. Journal of Biomechanics, 34(8), 995–1003. https://doi.org/10.1016/S0021-9290(01)00072-0
  • Hall, R. M., & Unsworth, A. (1997). Friction in hip prostheses. Biomaterials, 18(15), 1017–1026. https://doi.org/10.1016/S0142-9612(97)00034-3
  • Hammerberg, E. M., Wan, Z., Dastane, M., & Dorr, L. D. (2010). Wear and range of motion of different femoral head sizes. Journal of Arthroplasty, 25(6), 839–843. https://doi.org/10.1016/j.arth.2009.07.007
  • Harris, W. H. (2012). Edge loading has A paradoxical effect on wear in metal-on-polyethylene total hip arthroplasties. Clinical Orthopaedics and Related Research, 470(11), 3077–3082. https://doi.org/10.1007/s11999-012-2330-7
  • Hembus, J., Lux, L., Jackszis, M., Bader, R., & Zietz, C. (2018). Wear analysis of cross-linked polyethylene inserts articulating with alumina and ion-treated cobalt-chromium femoral heads under third-body conditions. Wear, 402–403(February), 216–223. https://doi.org/10.1016/j.wear.2018.02.017
  • Hu, C. Y., & Yoon, T. R. (2018). Recent updates for biomaterials used in total hip arthroplasty. Biomaterials Research, 22(1), 1–12. https://doi.org/10.1186/s40824-018-0144-8
  • Hung, J.-P., & Wu, J.-S.-S. (2002). A COMPARATIVE STUDY ON WEAR BEHAVIOR OF HIP PROSTHESIS BY FINITE ELEMENT SIMULATION. Biomedical Engineering: Applications, Basis and Communications, 14(4), 139–148. https://doi.org/10.4015/S1016237202000218
  • Izzo, G. M. (2012a). Total hip replacement: Structures modeling, gait analysis and report. Support for total hip replacement surgery:structures modeling, gait data analysis and report system. European Journal Translational Myology - Basic Applie Myology, 22(1&2), 53. https://doi.org/10.4081/ejtm.2012.1795
  • Izzo, G. M. (2012b). Support for total hip replacement surgery: Structures modeling, Gait data analysis and report system. European Journal of Translational Myology, 22(1–2), 69. https://doi.org/10.4081/bam.2012.1-2.69
  • Jackson, J. (2011). Father of the modern hip replacement: Professor Sir John Charnley (1911-82). Journal of Medical Biography, 19(4), 151–156. https://doi.org/10.1258/jmb.2011.011021
  • Jay Elliot, B., Gundapaneni, D., & Goswami, T. (2014). Finite element analysis of stress and wear characterization in total ankle replacements. Journal of the Mechanical Behavior of Biomedical Materials, 34(1), 134–145. https://doi.org/10.1016/j.jmbbm.2014.01.020
  • Jiang, H. (2007). Static and dynamic mechanics analysis on artificial hip joints with different interface designs by the finite element method. Journal of Bionic Engineering, 4(2), 123–131. https://doi.org/10.1016/S1672-6529(07)60024-9
  • Jones, O. (2019). The hip joint - articulations - movements. JAAPA: Official Journal of the American Academy of Physician Assistants, 32(8), 1–7. https://doi.org/10.1097/01.JAA.0000574528.47292.6e
  • Joumana Medlej. (2014). Human anatomy fundamentals: Flexibility and joint limitations. Envatotuts+, 1–23. https://design.tutsplus.com/articles/human-anatomy-fundamentals-flexibility-and-joint-limitations--vector-25401
  • Kang, L., Galvin, A. L., Jin, Z. M., & Fisher, J. (2006). A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 220(1), 33–46. https://doi.org/10.1243/095441105X69033
  • Katz, Y., Lubovsky, O., & Yosibash, Z. (2018). Patient-specific finite element analysis of femurs with cemented hip implants. Clinical Biomechanics, 58(October), 74–89. https://doi.org/10.1016/j.clinbiomech.2018.06.012
  • Kayabasi, O., & Ekici, B. (2007). The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Materials and Design, 28(8), 2269–2277. https://doi.org/10.1016/j.matdes.2006.08.012
  • Kayabasi, O., & Erzincanli, F. (2006). Finite element modelling and analysis of a new cemented hip prosthesis. Advances in Engineering Software, 37(7), 477–483. https://doi.org/10.1016/j.advengsoft.2005.09.003
  • Kim, J. T., & Yoo, J. J. (2016). Implant design in cementless hip arthroplasty. Hip & Pelvis, 28(2), 65. https://doi.org/10.5371/hp.2016.28.2.65
  • Kindsfater, K., & Lesko, J. (2018). Survivorship of a modular acetabular cup system: Medium- to long-term follow-up. Arthroplasty Today, 4(3), 376–382. https://doi.org/10.1016/j.artd.2017.07.001
  • Knight, S. R., Aujla, R., & Biswas, S. P. (2011). 100 years of operative history Er Ci Us E on Er Al. Orthopaedic Reviews, 3(6), 2–4. https://doi.org/10.4081/or.2011.16
  • Komistek, R. D., Dennis, D. A., Ochoa, J. A., Haas, B. D., & Hammill, C. (2002). In vivo comparison of hip separation after metal-on-metal or metal-on-polyethylene total hip arthroplasty. Journal of Bone and Joint Surgery - Series A, 84(10), 1836–1841. https://doi.org/10.2106/00004623-200210000-00015
  • Kurtz, S. M., Lau, E., Ong, K., Zhao, K., Kelly, M., & Bozic, K. J. (2009). Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clinical Orthopaedics and Related Research, 467(10), 2606–2612. https://doi.org/10.1007/s11999-009-0834-6
  • Kurtz, S. M., Ochoa, J. A., Hovey, C. B., & White, C. V. (1999). Simulation of initial frontside and backside wear rates in a modular acetabular component with multiple screw holes. Journal of Biomechanics, 32(9), 967–976. https://doi.org/10.1016/S0021-9290(99)00043-3
  • Lavernia, C. J., Iacobelli, D. A., Villa, J. M., Jones, K., Gonzalez, J. L., & Jones, W. K. (2015). Trunnion-head stresses in THA: Are big heads trouble? Journal of Arthroplasty, 30(6), 1085–1088. https://doi.org/10.1016/j.arth.2015.01.021
  • Lee, Y. K., Lee, J. C., Ha, Y. C., & Koo, K. H. (2014). Effect of neck length on third-generation ceramic head failure; finite element and retrieval analysis. Journal of Orthopaedic Science, 19(4), 587–597. https://doi.org/10.1007/s00776-014-0573-8
  • Levadnyi, I., Gubaua, J. E., Dicati, G. W. O., Awrejcewicz, J., Gu, Y., Pereira, J. T., & Loskutov, A. (2021). Comparative analysis of the biomechanical behavior of collar and collarless stems: Experimental testing and finite element modelling. Journal of Medical and Biological Engineering, 41(6), 844–855. https://doi.org/10.1007/s40846-021-00652-w
  • Levangie, P.K. (2005). Joint structure and function. Arthritis Rheum, 262–264. https://doi.org/10.1002/art.1780240233
  • Li, J., Hua, X., Jin, Z., Fisher, J., & Wilcox, R. K. (2014). Biphasic investigation of contact mechanics in natural human hips during activities. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228(6), 556–563. https://doi.org/10.1177/0954411914537617
  • Li, J., Stewart, T. D., Jin, Z., Wilcox, R. K., & Fisher, J. (2013). The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers. Journal of Biomechanics, 46(10), 1641–1647. https://doi.org/10.1016/j.jbiomech.2013.04.009
  • Lin, Y. T., Wu, J. S. S., & Chen, J. H. (2016). The study of wear behaviors on abducted hip joint prostheses by an alternate finite element approach. Computer Methods and Programs in Biomedicine, 131(1), 143–155. https://doi.org/10.1016/j.cmpb.2016.04.015
  • Liu, F., Fisher, J., & Jin, Z. (2013a). Wear prediction of orthopaedic implants. Wear of Orthopaedic Implants and Artificial Joints, 403–418. https://doi.org/10.1533/9780857096128.1.403
  • Liu, F., Fisher, J., & Jin, Z. (2013b). Effect of motion inputs on the wear prediction of artificial hip joints. Tribology International, 63(July), 105–114. https://doi.org/10.1016/j.triboint.2012.05.029
  • Liu, F., Leslie, I., Williams, S., Fisher, J., & Jin, Z. (2008). Development of computational wear simulation of metal-on-metal hip resurfacing replacements. Journal of Biomechanics, 41(3), 686–694. https://doi.org/10.1016/j.jbiomech.2007.09.020
  • Lombardi, A. V., Mallory, T. H., Dennis, D. A., Komistek, R. D., Fada, R. A., & Northcut, E. J. (2000). An in vivo determination of total hip arthroplasty pistoning during activity. Journal of Arthroplasty, 15(6), 702–709. https://doi.org/10.1054/arth.2000.6637
  • Lundberg, H. J., Stewart, K. J., Pedersen, D. R., Callaghan, J. J., & Brown, T. D. (2007). Nonidentical and outlier duty cycles as factors accelerating UHMWPE wear in THA: A finite element exploration. Journal of Orthopaedic Research, 25(1), 30–43. https://doi.org/10.1002/jor.20265
  • Malau, D. P., Utomo, M. S., Annur, D., Asmaria, T., Prabowo, Y., Rahyussalim, A. J., Supriadi, S., & Amal, M. I. (2019). Finite element analysis of porous stemmed hip prosthesis for children. AIP Conference Proceedings, 2193(December), 1–5. https://doi.org/10.1063/1.5139393
  • Matsoukas, G., & Kim, I. Y. (2009). Design optimization of a total hip prosthesis for wear reduction. Journal of Biomechanical Engineering, 131(5), 1–12. https://doi.org/10.1115/1.3049862
  • Mattei, L., Di Puccio, F., Piccigallo, B., & Ciulli, E. (2011). Lubrication and wear modelling of artificial hip joints: A review. Tribology International, 44(5), 532–549. https://doi.org/10.1016/j.triboint.2010.06.010
  • Maxian, T. A., Brown, T. D., Pedersen, D. R., & Callaghan, J. J. (1996a). A sliding distance coupled finite element formulation for polyethylene wear in total hip arthroplasty. Journal of Biomechanics, 29(5), 687–692. https://doi.org/10.1016/0021-9290(95)00125-5
  • Maxian, T. A., Brown, T. D., Pedersen, D. R., & Callaghan, J. J. (1996b). Adaptiive finite element modeling of long-term polyethylene wear in total hip arthroplasty. Journal of Orthopaedic Research, 14(4), 668–675. https://doi.org/10.1002/jor.1100140424
  • Mellon, S. J., Liddle, A. D., & Pandit, H. (2013). Hip replacement: Landmark surgery in modern medical history. Maturitas, 75(3), 221–226. https://doi.org/10.1016/j.maturitas.2013.04.011
  • Monif, M. M. (2012). Finite element study on the predicted equivalent stresses in the artificial hip joint. Journal of Biomedical Science and Engineering, 05(2), 43–51. https://doi.org/10.4236/jbise.2012.52007
  • Nakabayashi, Y., Wevers, H. W., Cooke, T. D. V., & Griffin, M. (1994). Bone strength and histomorphometry of the distal femur. The Journal of Arthroplasty, 9(3), 307–315. https://doi.org/10.1016/0883-5403(94)90086-8
  • Nam, D., Osbahr, D. C., Choi, D., Ranawat, A. S., Kelly, B. T., & Coleman, S. H. (2011). Defining the origins of the iliofemoral, ischiofemoral, and pubofemoral ligaments of the hip capsuloligamentous complex utilizing computer navigation. HSS Journal, 7(3), 239–243. https://doi.org/10.1007/s11420-011-9214-3
  • Navarro-Zarza, J. E., Villaseñor-Ovies, P., Vargas, A., Canoso, J. J., Chiapas-Gasca, K., Hernández-Díaz, C., Saavedra, M. Á., & Kalish, R. A. (2012). Clinical anatomy of the pelvis and hip. Reumatologia Clinica, 8(SUPPL.2), 33–38. https://doi.org/10.1016/j.reuma.2012.10.006
  • Norman, T. L., Denen, J. E., Land, A. J., Kienitz, D. M., & Fehring, T. A. (2019). Taper-trunnion interface stress varies significantly with head size and activity. Journal of Arthroplasty, 34(1), 157–162. https://doi.org/10.1016/j.arth.2018.09.004
  • Pakhaliuk, V., Polyakov, A., Kalinin, M., & Kramar, V. (2015). Improving the finite element simulation of wear of total hip prosthesis’ spherical joint with the polymeric component. Procedia Engineering, 100(January), 539–548. https://doi.org/10.1016/j.proeng.2015.01.401
  • Pal Singh, A. (2015). Hip joint anatomy. Bone and Spine. http://boneandspine.com/hip-joint-anatomy/
  • Patil, S., Bergula, A., Chen, P. C., Colwell, C. W., & D’lima, D. D. (2003). Polyethylene wear and acetabular component orientation. Journal of Bone and Joint Surgery - Series A, 85(SUPPL. 4), 56–63. https://doi.org/10.2106/00004623-200300004-00007
  • Peng, M. J. Q., Chen, H. Y., Hu, Y., Ju, X., & Bai, B. (2017). Finite element analysis of porously punched prosthetic short stem virtually designed for simulative uncemented hip arthroplasty. BMC Musculoskeletal Disorders, 18(1), 1–12. https://doi.org/10.1186/s12891-017-1651-9
  • Peng, Y., Arauz, P., An, S., & Kwon, Y. M. (2019). Computational modeling of polyethylene wear in total hip arthroplasty using patient-specific kinematics-coupled finite element analysis. Tribology International, 129(August 2018), 162–166. https://doi.org/10.1016/j.triboint.2018.08.009
  • Pietrabissa, R., Raimondi, M., & Di Martino, E. (1998). Wear of polyethylene cups in total hip arthroplasty: A parametric mathematical model. Medical Engineering and Physics, 20(3), 199–210. https://doi.org/10.1016/S1350-4533(98)00004-6
  • Portigliatti-Barbos, M., Carando, S., Ascenzi, A., & Boyde, A. (1987). On the structural symmetry of human femurs. Bone, 8(3), 165–169. https://doi.org/10.1016/8756-3282(87)90016-0
  • Putz, R., & Pabst, R. (2006). Sobotta Atlas of human anatomy. volume 2, trunk, viscera, lower limb (Vol. 2). Elsevier Inc. http://www.naprapat.com/sobotta/sobotta2.pdf
  • Queiroz, R. D., Oliveira, A. L. L., Trigo, F. C., & Lopes, J. A. (2013). A finite element method approach to compare the wear of acetabular cups in polyethylene according to their lateral tilt in relation to the coronal plane. Wear, 298–299(1), 8–13. https://doi.org/10.1016/j.wear.2012.12.032
  • Rahman, H. S. A., Choudhury, D., Osman, N. A. A., Shasmin, H. N., & Abas, W. A. B. W. (2013). In vivo and in vitro outcomes of alumina, zirconia and their composited ceramic-on-ceramic hip joints. Journal of the Ceramic Society of Japan, 121(1412), 382–387. https://doi.org/10.2109/jcersj2.121.382
  • Raimondi, M. T., Santambrogio, C., Pietrabissa, R., Raffelini, F., & Molfetta, L. (2001). Improved mathematical model of the wear of the cup articular surface in hip joint prostheses and comparison with retrieved components. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 215(4), 377–390. https://doi.org/10.1243/0954411011535966
  • Ramos, A., Completo, A., Relvas, C., & Simões, J. A. (2012). Design process of a novel cemented hip femoral stem concept. Materials and Design, 33(1), 313–321. https://doi.org/10.1016/j.matdes.2011.07.039
  • Rawlinson, J. J., Punga, K. P., Gunsallus, K. L., Bartel, D. L., & Wright, T. M. (2007). Wear simulation of the ProDisc-L disc replacement using adaptive finite element analysis. Journal of Neurosurgery: Spine, 7(2), 165–173. https://doi.org/10.3171/SPI-07/08/166
  • Roach, K. E., & Miles, T. P. (1991). Normal hip and knee active range of motion: The relationship to age. Physical Therapy, 71(9), 656–665. https://doi.org/10.1093/ptj/71.9.656
  • Roy, M. E., Whiteside, L. A., Xu, J., & Katerberg, B. J. (2010). Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty. Acta Biomaterialia, 6(4), 1619–1624. https://doi.org/10.1016/j.actbio.2009.10.037
  • Rymek, J., & Ciszkiewicz, A. (2022). Analyzing the sensitivity of a procedure for obtaining a spherical contact pair to model the hip joint. In: Pijanowska D.G., Zieliński K., Liebert A., Kacprzyk J. (eds) Biocybernetics and Biomedical Engineering – Current Trends and Challenges. Lecture Notes in Networks and Systems, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-83704-4_11
  • Saikko, V., Ahlroos, T., Calonius, O., Keränen, & Keränen, J. (2001). Wear simulation of total hip prostheses with polyethylene against\nCoCr, alumina and diamond-like carbon. Biomaterials, 22(12), 1507–1514. https://doi.org/10.1016/S0142-9612(00)00306-9
  • Saikko, V., & Shen, M. (2010). Wear comparison between a dual mobility total hip prosthesis and a typical modular design using a hip joint simulator. Wear, 268(2–3), 617–621. https://doi.org/10.1016/j.wear.2009.10.011
  • Sankar, W. N., Laird, C. T., & Baldwin, K. D. (2012). Hip range of motion in children: What is the norm? Journal of Pediatric Orthopaedics, 32(4), 399–405. https://doi.org/10.1097/BPO.0b013e3182519683
  • Saxena, A. K., Misra, R. K., & Dixit, A. (2015). Numerical Analysis of Hip Joint Implant. Materials Today: Proceedings, 2(4–5), 1649–1656. https://doi.org/10.1016/j.matpr.2015.07.092
  • Scifert, C. F., Brown, T. D., & Lipman, J. D. (1999). Finite element analysis of a novel design approach to resisting total hip dislocation. Clinical Biomechanics, 14(10), 697–703. https://doi.org/10.1016/S0268-0033(99)00054-6
  • Senalp, A. Z., Kayabasi, O., & Kurtaran, H. (2007). Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials and Design, 28(5), 1577–1583. https://doi.org/10.1016/j.matdes.2006.02.015
  • Sfantos, G. K., & Aliabadi, M. H. (2007). Total hip arthroplasty wear simulation using the boundary element method. Journal of Biomechanics, 40(2), 378–389. https://doi.org/10.1016/j.jbiomech.2005.12.015
  • Shaik, S. A., Bose, K., & Cherukuri, H. P. (2012). A study of durability of hip implants. Materials and Design, 42(1), 230–237. https://doi.org/10.1016/j.matdes.2012.05.049
  • Shi, B., Ajayi, O. O., Fenske, G., Erdemir, A., & Liang, H. (2003). Tribological performance of some alternative bearing materials for artificial joints. Wear, 255(7–12), 1015–1021. https://doi.org/10.1016/S0043-1648(03)00276-X
  • Spina, A. A. (2007). External coxa saltans (snapping hip) treated with active release techniques: A case report. The Journal of the Canadian Chiropractic Association, 51(1), 23–29. http://www.ncbi.nlm.nih.gov/pubmed/17657288%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1924651
  • Spriano, S., Vernè, E., Faga, M. G., Bugliosi, S., & Maina, G. (2005). Surface treatment on an implant cobalt alloy for high biocompatibility and wear resistance. Wear, 259(7–12), 919–925. https://doi.org/10.1016/j.wear.2005.02.011
  • Tai, C. L., Shih, C. H., Chen, W. P., Lee, S. S., Liu, Y. L., Hsieh, P. H., & Chen, W. J. (2003). Finite element analysis of the cervico-trochanteric stemless femoral prosthesis. Clinical Biomechanics, 18(6), 53–58. https://doi.org/10.1016/S0268-0033(03)00085-8
  • Tan, S. C., Teeter, M. G., Del Balso, C., Howard, J. L., & Lanting, B. A. (2015). Effect of taper design on trunnionosis in metal on polyethylene total hip arthroplasty. Journal of Arthroplasty, 30(7), 1269–1272. https://doi.org/10.1016/j.arth.2015.02.031
  • Taylor, M., & Prendergast, P. J. (2015). Four decades of finite element analysis of orthopaedic devices: Where are we now and what are the opportunities? Journal of Biomechanics, 48(5), 767–778. https://doi.org/10.1016/j.jbiomech.2014.12.019
  • Teoh, S. H., Chan, W. H., & Thampuran, R. (2002). An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty. Journal of Biomechanics, 35(3), 323–330. https://doi.org/10.1016/S0021-9290(01)00215-9
  • Uddin, M. S., & Zhang, L. C. (2013). Predicting the wear of hard-on-hard hip joint prostheses. Wear, 301(1–2), 192–200. https://doi.org/10.1016/j.wear.2013.01.009
  • Ulrich, S. D., Seyler, T. M., Bennett, D., Delanois, R. E., Saleh, K. J., Thongtrangan, I., Kuskowski, M., Cheng, E. Y., Sharkey, P. F., Parvizi, J., Stiehl, J. B., & Mont, M. A. (2008). Total hip arthroplasties: What are the reasons for revision? International Orthopaedics, 32(5), 597–604. https://doi.org/10.1007/s00264-007-0364-3
  • Value Dossier. (2012). Zimmer computer-assisted surgery in total knee arthroplasty value dossier. http://www.zimmer.com/content/dam/zimmer-web/documents/en-US/pdf/medical-professionals/reimbursement/our-science/cas_valuedossier.pdf
  • Virulsri, C., Tangpornprasert, P., & Romtrairat, P. (2015). Femoral hip prosthesis design for Thais using multi-objective shape optimization. Materials and Design, 68(1), 1–7. https://doi.org/10.1016/j.matdes.2014.11.027
  • Wang, A., Essner, A., & Klein, R. (2001). Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine EVect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 215(2), 133–139. https://doi.org/10.1243/0954411011533698
  • Watanabe, Y., Shiba, N., Matsuo, S., Higuchi, F., Tagawa, Y., & Inoue, A. (2000). Biomechanical study of the resurfacing hip arthroplasty: Finite element analysis of the femoral component. Journal of Arthroplasty, 15(4), 505–511. https://doi.org/10.1054/arth.2000.1359
  • Williams, J. (2005). Engineering tribology. Engineering Tribology, 9780521609(1), 1–488. https://doi.org/10.1017/CBO9780511805905
  • Wroblewski, B. M., Fleming, P. A., & Siney, P. D. (1999). Charnley low-frictional torque arthroplasty of the hip. The Journal of Bone and Joint Surgery. British Volume, 81-B(3), 427–430. https://doi.org/10.1302/0301-620X.81B3.0810427
  • Wu, J. S. S., Hung, J. P., Shu, C. S., & Chen, J. H. (2003). The computer simulation of wear behavior appearing in total hip prosthesis. Computer Methods and Programs in Biomedicine, 70(1), 81–91. https://doi.org/10.1016/S0169-2607(01)00199-7
  • Xin, Y., Kim, K., & Yang, S. (2013). Analysis of stress and load distribution on hip and knee joint after unilateral total hip arthroplasty. Proceedings, The 2nd International Conference on Information Science and Technology. 23(4), 235–239. https://www.semanticscholar.org/paper/Analysis-of-Stress-and-load-Distribution-on-Hip-and-Xin-Kim/e74f5ea036c47340c7383a71677d5523269aa159
  • Yan, W., Berthe, J., & Wen, C. (2011). Numerical investigation of the effect of porous titanium femoral prosthesis on bone remodeling. Materials and Design, 32(4), 1776–1782. https://doi.org/10.1016/j.matdes.2010.12.042
  • Yılmaz, S., Calikoglu, E. O., & Kosan, Z. (2019). For an uncommon neurosurgical emergency in a developing country. Nigerian Journal of Clinical Practice, 22(8), 1070–1077. https://doi.org/10.4103/njcp.njcp
  • Zhang, T., Harrison, N. M., McDonnell, P. F., McHugh, P. E., & Leen, S. B. (2013). A finite element methodology for wear-fatigue analysis for modular hip implants. Tribology International, 65(1), 113–127. https://doi.org/10.1016/j.triboint.2013.02.016