2,610
Views
4
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Modeling energy content of municipal solid waste based on proximate analysis: R-k class estimator approach

, ORCID Icon, &
Article: 2046243 | Received 08 Oct 2021, Accepted 16 Feb 2022, Published online: 13 Mar 2022

References

  • Abdellah, A. M., & Balla, Q. I. (2013). Domestic solid waste management and its impacts on human health and the environment in Sharg El Neel locality, Khartoum State, Sudan. The Journal of Biological Sciences, 16(22), 1538–20. https://doi.org/10.3923/pjbs.2013.1538.1544
  • Abhishek, S., Anil, K. G., Brajesh, D., & Makrand, M. G. (2021). Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. Journal of the Air and Waste Management Association 72 (2) 147–160 . https://doi.org/10.1080/10962247.2021.1980450
  • Adekunle, J. O., Ibrahim, J. S., & Kucha, E. I. (2015). Proximate and ultimate analyses of biocoal briquettes of nigerian’s ogboyaga and okaba sub-bituminous coal. British Journal of Applied Science & Technology, 7(1), 114–123. https://doi.org/10.9734/BJAST/2015/15154
  • Ajadi, B. S., & Tunde, A. M. (2010). Spatial variation in solid waste composition and management in Ilorin Metropolis, Nigeria. International Journal of Human Ecology, 32(2), 101–106. https://doi.org/10.1080/09709274.2010.11906327
  • Akdag, A. S., Atimtay, A., & Sanin, F. D. (2016). Comparison of fuel value and combustion characteristics of two different rdf samples. Waste Management, 47, 217–224. https://doi.org/10.1016/j.wasman.2015.08.037
  • Akhator, E. P., Obanor, A. I., & Igbinomwanhia, D. I. (2016). Thermal analysis of small-scale solid waste-fired steam boiler for power generation in benin city, nigeria. Nigerian Journal of Technology, 3(3), 555–561. https://doi.org/10.4314/njt.v35i3.13
  • Akhtar, J., Sheikh, N., & Munir, S. (2017). Linear regression-based correlations for estimation of high heating values of Pakistani lignite coals. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(10), 1063–1070. https://doi.org/10.1080/15567036.2017.1289283
  • Alkasrawi, M. 2004. Development of simultaneous saccharification and fermentation for production of ethanol from softwood. Lund University.
  • Amin, K., & Yang, G. S. (2012). Identification of the municipal solid waste characteristics and potential of plastic recovery 5 (7) . https://doi.org/10.5539/jsd.v5n7p11
  • Arif, R. S., Bambang, S., Hamzah, F., & Oki, M. (2019). Syngas production from municipal solid waste with a reduced tar yield by three-stages of air inlet to a downdraft gasifier doi:10.1016/j.fuel.2019.116509.
  • Aslam, M., & Ahmad, S. (2020). The modified Liu-ridge-type estimator: A new class of biased estimators to address multicollinearity. Communications in Statistics - Simulation and Computation, 1–20. https://doi.org/10.1080/03610918.2020.1806324
  • Ayinde, K., Lukman, A. F., Alabi, O. O., & Bello, H. A. (2020). A new approach of principal component regression estimator with applications to collinear data. International Journal of Engineering Research and Technology, 13(7), 1616–1622. https://doi.org/10.37624/IJERT/13.7.2020.1616-1622
  • Ayinde, K., Lukman, A. F., Samuel, O. O., & Ajiboye, S. A. (2018). Some new adjusted ridge estimators of linear regression model. International Journal of Civil Engineering and Technology, 9(11), 2838–2852.
  • Ayodele, T. R., Ogunjuyigbe, A. S. O., & Alao, M. A. (2017). Life cycle assessment of waste-to-energy (WTE) technologies for electricity generation using municipal solid waste in Nigeria. Applied Energy, 201, 200–218. http://dx.doi.org/10.1016/j.apenergy.2017.05.097
  • Baghban, A., & Ebadi, T. (2018). GA-ANFIS modeling of higher heating value of wastes: Application to fuel upgrading. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(1), 1–7. https://doi.org/10.1080/15567036.2017.1344746
  • Baghban, A., & Shamshirband, S. (2019). On the estimation of higher heating value of municipal wastes using soft computing approaches. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–9. https://doi.org/10.1080/15567036.2019.1645764
  • Baye, M. R., & Parker, D. F. (1984). Combining ridge and principal component regression: A money demand illustration. Communications in Statistics: Theory and Methods, 13(2), 197–205. https://doi.org/10.1080/03610928408828675
  • Beyene, H. D., Werkneh, A. A., & Ambaye, T. G. (2018). Current updates on waste to energy (WTE) technologies: A review. Renewable Energy Focus, 24, 1–11. https://doi.org/10.1016/j.ref.2017.11.001
  • Bosmans, A., Vanderreydt, I., Geysen, D., & Helsen, L. (2013). The crucial role of waste-to-energy technologies in enhanced landfill mining: A technology review. Journal of Cleaner Production, 55, 10–23. https://doi.org/10.1016/j.jclepro.2012.05.032
  • Chhotu, R., Amit, K., & Pushpa, R. (2021). Municipal solid waste management: a review of waste to energy (wte) approaches. BioResources, 16(2 4275–4320).
  • Cordero, T., Marquez, F., Rodriguez-Mirasol, J., & Rodriguez, J. J. Predicting heating values of lignocellulosic and carbonaceous materials from proximate analysis. (2001). Fuel, 11(11), 1567–1571. https://doi.org/10.1016/S0016-2361(01)00034-5
  • Dawoud, I., & Kibria, B. M. G. (2020). A new biased estimator to combat the multicollinearity of the Gaussian linear regression model. Stats, 3(4), 526–541. https://doi.org/10.3390/stats3040033
  • Demirbas, A. (2003). Relationships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Source, 25(7), 629–635. https://doi.org/10.1080/00908310390212336
  • EC SWA-Tool.2004. European Commission solid waste tool: Development of a methodology tool to enhance the precision and comparability of solid waste analysis data. http://www.wastesolutions.org. Accessed 12 Dec 2016
  • Erol, M., Haykiri-Acma, H., & Kucukbayrak, S. (2010). calorific value estimation of biomass from their proximate analyses data. Renewable Energy, 35(1), 170–173. https://doi.org/10.1016/j.renene.2009.05.008
  • García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2014). Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel, 117, 1139–1147. https://doi.org/10.1016/j.fuel.2013.08.049
  • Ghugare, S. B., Tiwary, S., Elangovan, V., & Tambe, S. S. (2014). Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms. Bioenergy Research, 7(2), 681–692. https://doi.org/10.1007/s12155-013-9393-5
  • Haller, M. Y., Carbonell, D., Dudita, M., Zenhäusern, D., & Häberle, A. (2020). Seasonal energy storage in aluminium for 100 percent solar heat and electricity supply. Energy Conversion and Management, 5, 100017 doi:10.1016/j.ecmx.2019.100017.
  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67. https://doi.org/10.1080/00401706.1970.10488634
  • Ibadan Electricity Distribution Company (IBEDC), 2016. Kwara needs 270 MW for 24-hour electricity. Available from: https://www.ilorin.info/fullnews.php?id=18082 03 October 2018)
  • Ibikunle, R. A., Lukman, A. F., Titiladunayo, I. F., Akeju, E. A., & Dahunsi, S. O. (2020b). Modeling and robust prediction of high heating values of municipal solid waste based on ultimate analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18. https://doi.org/10.1080/15567036.2020.1841343
  • Ibikunle, R. A., Titiladunayo, I. F., Akinnuli, B. O., Dahunsi, S. O., & Olayanju, T. M. A. (2019). Estimation of power generation from municipal solid wastes: A case study of Ilorin metropolis, Nigeria. Energy Reports, 5, 126–135. https://doi.org/10.1016/j.egyr.2019.01.005
  • Ibikunle, R. A., Titiladunayo, I. F., Akinnuli, B. O., Lukman, A. F., Ikubanni, P. P., & Agboola, O. O. (2018). Modelling the energy content of municipal solid waste and determination of its physiochemical correlation using multiple regression analysis. International Journal of Mechanical Engineering Technology, 9(11), 220–232.
  • Ibikunle, R. A., Titiladunayo, I. F., Dahunsi, S. O., Akeju, E. A., & Osueke, C. O. (2021). Characterization and projection of dry season municipal solid waste for energy production in Ilorin metropolis, Nigeria. Waste Management & Research, 1–10. https://doi.org/10.1177/0734242X2098
  • Ibikunle, R. A., Titiladunayo, I. F., Lukman, A. F., Dahunsi, S. O., & Akeju, E. A. (2020). Municipal solid waste sampling, quantification and seasonal characterization for power evaluation: Energy potential and statistical modelling. Fuel, 277, 1. https://doi.org/10.1016/j.fuel.2020.118122
  • Ibikunle, R. A., Titiladunayo, I. F., Lukman, A. F., Dahunsi, S. O., & Akeju, E. A. (2020a). Municipal solid waste sampling, quantification and seasonal characterization for power evaluation: Energy potential and statistical modelling. Journal of Fuels, 277(1), 118122. https://doi.org/10.1016/j.fuel.2020.118122
  • Issam, A., Maria, M., Abdul, S. F., Abu, Z., Hafez, Q. S., & Despo, K. (2010). Solid waste characterization, quantification, and management practices in developing countries. Journal of Environmental Management, 91(5), 1131–1138. https://doi.org/10.1016/j.jenvman.2010.01.003
  • Kaciranlar, S., & Sakallioglu, S. (2001). Combining the Liu estimator and the principal component regression estimator. Communications in Statistics - Theory and Methods, 30(12), 2699–2705. https://doi.org/10.1081/STA-100108454
  • Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank.
  • Khuriati, A., Setia, B. W., Nur, M., Istadi, I., & Suwoto, G. (2017). Modeling of heating value of municipal solid waste Based on ultimate analysis using multiple stepwise regression linear in Semarang. ARPN Journal of Engineering and Applied Sciences, 12(9), 2870–2876.
  • Khuriati, A., Setiabudi, W., Nur, M., & Istadi, I. (2015). Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network. AIP Conference Proceedings, 1699, 030028. https://doi.org/10.1063/1.4938313
  • Kibria, G. B. M., & Lukman, A. F. (2020). A new ridge-type estimator for the linear regression model: simulations and applications. Scientifica, 2020, 1–16. https://doi.org/10.1155/2020/9758378
  • Küçükbayrak, S., Dürüs, B., Meríçboyu, A. E., & Kadioglu, E. (1991). Estimation of calorific values of Turkish lignites. Fuel, 70(8), 979–981. https://doi.org/10.1016/0016-2361/2891/2990054-E
  • Kuleape, R., Cobinna, S. J., Danpare, S. B., Duwiejuah, A. B., Amoako, E. E., & Asare, W. (2014). Assessment of the energy recovery potentials of solid waste generated in Akosombo, Ghana. Africa Journal Environmental Science and Technology, 8(5), 297–305. https://doi.org/10.5897/AJEST2014.1663
  • Laith, A., Hadidi, L., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Manage, 59, 90–101. https://doi.org/10.1016/j.wasman.2016.09.030
  • Lawal, A. D., Joseph, E., & Rufai, A. I. (2014). Characteristics and composition analysis of municipal solid waste in Kano, Nigeria. International Journal of Scientific and Engineering Research, 9, 972–975.
  • Liu, K. (1993). A new class of biased estimate in linear regression. Communications in Statistics, 22(2), 393–402. https://doi.org/10.1080/03610929308831027
  • Lukman, A. F., & Ayinde, K. (2017). Review and Classifications of the ridge parameter estimation techniques. Hacettepe Journal of Mathematics and Statistics, 46(5), 953–967. https://doi.org/10.15672/HJMS.201815671
  • Lukman, A. F., Ayinde, K., Binuomote, S., & Onate, A. C. (2019a). Modified ridge-typeestimator to combat multicollinearity: Application to chemical data. Journal of Chemometrics, 33(5), e3125. https://doi.org/10.1002/cem.3125
  • Lukman, A. F., Ayinde, K., Oludoun, O., & Onate, C. (2020b). Combining modified ridge type and principal component regression estimators. Scientific African, 9, e00536. https://doi.org/10.1016/j.sciaf.2020.e00536
  • Lukman, A. F., Ayinde, K., Sek, S. K., & Adewuyi, E. A. (2019b). Modified new two-parameter estimator in a linear regression model. Modelling and Simulation in Engineering, 2019, 1–10. https://doi.org/10.1155/2019/6342702
  • Lukman, A. F., Kibria, G. B. M., Ayinde, K., & Jegede, S. L. (2020a). Modified one-parameter liu estimator for the linear regression model. Modelling and Simulation in Engineering, 9574304. https://doi.org/10.1155/2020/9574304
  • Massy, F. (1965). Principal components regression in exploratory statistical research. Journal of the American Statistical Association, 60(309), 234–266. https://doi.org/10.1080/01621459.1965.10480787
  • Motghare, K. A., Rathod, A. P., Wasewar, K. L., & Labhsetwar, N. K. (2016). Comparative study of different waste biomass for energy application (Waste Management). https://doi.org/10.1016/j.wasman.2015.07.032
  • Mushtaq, J., Dar, A. Q., & Ahsan, N. (2020). Spatial–temporal variations and forecasting analysis of municipal solid waste in the mountainous city of north-western Himalayas. Springer Nature. https://doi.org/10.1007/s42452-020-2975-x
  • Nhuchhen, D. R., & Afzal, M. T. (2017). HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering, 4(1), 7. https://doi.org/10.3390/bioengineering4010007
  • Nnodim, O. 2016: ‘Power generation crashes to 1,400MW’, punch newspaper, 18 May. http://www.punchng.com/powergenerationcrashes1400mwtcn/. (Accessed 05 January 2020)
  • Noori, R., Abdoli, M. A., Jalili Ghazizade, M., & Samieifard, R. (2009). Comparison of neural network and principal component-regression analysis to predict the solid waste generation in tehran. Iranian Journal of Public Health, 38(1), 74–84.
  • NT ENVR-01 (Nordtest Method, 2005) Solid waste municipal sampling and characterization. (2005) Published by nordtest tekniikantie 12, FIN—02150 ESPOO FINLAND http://www.nordtest.info/index.php/methods/item/solid-waste-municipal-samplingand-characterisation-nt-envir-001.html Accessed 07 July 2015
  • Omari, A. M. 2015. Characterization of Municipal solid waste for energy recovery. A case study of Arusha, Tanzania. https://www.researchgate.net/publication/281620004_Characterization_of_Municipal_solidwaste_for_energy_recovery. (Accessed 05 January 2020)
  • Omari, A., Said, M., Njau, K., John, G., & Mtul, P. (2014). Energy recovery routes from municipal solid waste, A case study of Arusha-Tanzania. International Journal of Energy Technology and Policy.
  • Özyuguran, A., & Yaman, S. (2017). Prediction of calorific value of biomass from proximate analysis. Energy Procedia, 107, 130–136. https://doi.org/10.1016/j.egypro.2016.12.149
  • Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84(5), 487–494. https://doi.org/10.1016/j.fuel.2004.10.010
  • Psomopoulos, C. S., Bourka, A., & Themelis, N. J. J. (2009). Waste-to-energy: A review of the status and benefits in USA. Waste Management, 5(5), 1718–1724. https://doi.org/10.1016/j.wasman.2008.11.020
  • Qasim, M., Amin, M., & Omer, T. (2019). Performance of some new Liu parameters for the linear regression model. Communications in Statistics - Theory and Methods 49 17 4178–4196 . https://doi.org/10.1080/03610926.2019.1595654
  • Qian, X., Lee, S., Soto, A., & Chen, G. (2018). Regression model to predict the higher heating value of poultry waste from proximate analysis. Resources, 7(3), 39. https://doi.org/10.3390/resources7030039
  • Reddy, P. J. (2011). Municipal solid waste management: processing energy recovery global examples. BS Publications.
  • Reza, E., Mehdi, B., & Behrooz, G. (2021). Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria. Renewable and Sustainable Energy Reviews, 146, 111190. https://doi.org/10.1016/j.rser.2021.111190
  • Saito, M., Amagai, K., Ogiwara, G., & Arai, M. (2001). Combustion characteristics of waste material containing high moisture. Fuel, 80(9), 1201–1209. https://doi.org/10.1016/S0016-2361(00)00208-8
  • Salameh, T., Tawalbeh, M., Al-Shannag, M., Saidan, M., Melhem, K. B., & Alkasrawi, M. (2020). Energy saving in the process of bioethanol production from renewable paper mill sludge. Energy, 196, 117085. https://doi.org/10.1016/j.energy.2020.117085
  • Sharma, M., & McBean, E. A. (2007). A methodology for solid waste characterization based on diminishing marginal returns. Journal of Waste Management, 27(3), 337–344. https://doi.org/10.1016/j.wasman.2006.02.007
  • Sheng, C., & Azevedo, J. L. T. (2015). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass & Bioenergy, 28(5), 499–507. https://doi.org/10.1016/j.biombioe.2004.11.008
  • Shi, H., Maphinpey, N., Aqsha, A., & Silbermann, R. (2016). Characterization, thermochemical conversion studies and heating value modeling of municipal solid waste. Journal of Waste Management, 48, 34–47.
  • Slavko, D., Jozsef, V., Stavra, K., Maria, L., Vassilis, I., Christos, V., Lulian, M., Nona, A., & Lucia, I. 2012. Sampling and analysis of solid municipal waste in Balkan region: The frst results and their significance. Natural Technology University of Anthens, School of Chemical Engineering, UEST 9, Heroon Polytechniou Street, Zographou Campus. https://www.iswa.org/uploads/tx_iswaknowledgebase/Moustakas.pdf. Accessed 15 Sep 2019
  • Smallbone, A., Jia, B., Atkins, P., & Roskilly, A. P. (2020). The impact of disruptive powertrain technologies on energy consumption and carbon dioxide emissions from heavy-duty vehicles. Energy Conversion and Management, 6, 100030 doi:10.1016/j.ecmx.2020.100030.
  • song, Q., Zhao, H., Jia, J., Yang, L., Ly, W., Bao, J., Shu, X., Gu, Q., & Zhang, P. (2020). Pyrolysis of municipal solid waste with iron-based additives: A study on the kinetic, product distribution and catalytic mechanisms. Journal of Cleaner Production, 258, 120682. https://doi.org/10.1016/j.jclepro.2020.120682
  • Sudhir, K., Venkata, S., & Prasada, R. (2010) Waste – To – energy: a case study of Eluru City, Andra Pradesh. International Journal of Environmental Sciences, 1 151–162 2
  • Sun, N., & Chungpaibulpatana, S. (2017). Development of an appropriate model for forecasting Municipal Solid waste generation in Bangkok. Energy Procedia, 138, 907–912. https://doi.org/10.1016/j.egypro.2017.10.134
  • Sun, R., Ismail, T. M., Ren, X., & Abd El-Salam, M. (2015a). Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Waste Management, 39, 166–178. https://doi.org/10.1016/j.wasman.2015.02.018
  • Sun, R., Ismail, T. M., Ren, X., & Abd El-Salam, M. (2015b). Effect of ash content on the combustion process of simulated MSW in the fixed bed. Waste Management, 48 236–249 . https://doi.org/10.1016/j.wasman.2015.10.007
  • SWA-Tool, E. 2004. European commission solid waste tool: Development of a methodology tool to enhance the precision and comparability of solid waste analysis data: www.wastesolutions.org. [Accessed 12 December 2016]
  • SWM (2015). Swedish waste management. www.avfallsverige.se/fileadmin/uploads/Rapporter/SWM_2015.pdf. (Accessed 04 January 2020)
  • Titiladunayo, I. F., Akinnuli, B. O., Ibikunle, R. A., Agboola, O. O., & Ogunsemi, B. T. (2018). Analysis of combustible municipal solid waste fractions as fuel for energy production: Exploring its physicochemical and thermal characteristics. International Journal of Civil Engineering and Technology, 9, 1557–1575.
  • Tozlu, A., Ozahi, E., & Abusoglu, A. (2016). Waste to energy technologies for municipal solid waste management in Gaziantep. Renewable and Sustainable Energy Reviews, 54, 809–815. https://doi.org/10.1016/j.rser.2015.10.097
  • Uchendu, C. (2008). Municipal solid waste treatment and recycling technologies for developing countries: A typical Nigeria case study. Journal of Solid Waste Treatment and Management, 34, 127–135.
  • US EPA, 2018: National overview: facts and figures on materials, wastes and recycling (combustion with energy recovery). https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figuresmaterials#:~:text=In%202018%2C%2034.6%20million%20tons (Accessed 05 January 2020)
  • Vairam, S., & Ramesh, S. (2013). Engineering Chemistry. John Wiley and sons Ltd.
  • Yin, C. Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3), 1128–1132. https://doi.org/10.1016/j.fuel.2010.11.031
  • Zhang, J., Kan, X., Shen, Y., Loh, K. C., Wang, C. H., Dai, Y., & Tong, Y. W. (2018). A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment. Energy, 152, 214–222. https://doi.org/10.1016/j.energy.2018.03.143
  • Zhou, H., Meng, A. H., Long, Y. Q., Li, Q. H., & Zhang, Y. G. (2014). An overview of characteristics of municipal solid waste fuel in china. physical. chemical composition and heating value. Renewable And Sustainable Energy Reviews, 36, 107–122. https://doi.org/10.1016/j.rser.2014.04.024