1,689
Views
0
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Numerical Analysis of Heat Transfer Enhancement of Solar Air Heater using Discrete Triangle Wave Corrugations

, , ORCID Icon & | (Reviewing editor)
Article: 2051312 | Received 07 Nov 2021, Accepted 03 Mar 2022, Published online: 30 Mar 2022

References

  • Aboghrara, A. M., Baharudin, B. T. H. T., Alghoul, M. A., Adam, N. M., Hairuddin, A. A., & Hasan, H. A. (2017). Performance analysis of solar air heater with jet impingement on corrugated absorber plate. Case Studies in Thermal Engineering , 10(May), 111–34. https://doi.org/10.1016/j.csite.2017.04.002
  • Alfarawi, S. A. A.-M., & Bodalal, A. (2017, August). Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs. International Journal of Thermal Sciences, 118, 123–138. https://doi.org/10.1016/j.ijthermalsci.2017.04.017
  • Azad, R., Bhuvad, S., & Lanjewar, A. (2021, September). Study of solar air heater with discrete arc ribs geometry: Experimental and numerical approach. International Journal of Thermal Sciences, 167, 107013. https://doi.org/10.1016/j.ijthermalsci.2021.107013
  • Barik, A. K., Mohanty, A., Senapati, J. R., & Awad, M. M. (2021, February). Constructal design of different ribs for thermo-fluid performance enhancement of a solar air heater (SAH). International Journal of Thermal Sciences, 160, 106655. https://doi.org/10.1016/j.ijthermalsci.2020.106655
  • Bezbaruah, P. J., Das, R. S., & Sarkar, B. K. (2021, August). Experimentally validated 3D simulation and performance optimization of a solar air duct with modified conical vortex generators. Solar Energy, 224, 1040–1062. https://doi.org/10.1016/j.solener.2021.06.052
  • Bhagoria, J. L., Saini, J. S., & Solanki, S. C. (2002, March). Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renewable Energy, 25(3), 341–369. https://doi.org/10.1016/S0960-1481(01)00057-X
  • Bhuvad, S. S., Azad, R., & Lanjewar, A. (2021, December). Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study. Renewable Energy 185 . https://doi.org/10.1016/j.renene.2021.12.037
  • Chamoli, S., Lu, R., Xie, J., & Yu, P. (2018, May). Numerical study on flow structure and heat transfer in a circular tube integrated with novel anchor shaped inserts. Applied Thermal Engineering, 135, 304–324. https://doi.org/10.1016/j.applthermaleng.2018.02.052
  • Chamoli, S., Zhuang, X., Kumar Pant, P., & Yu, P. (2021, July). Heat transfer in a turbulent flow tube integrated with tori as vortex generator inserts. Applied Thermal Engineering, 194, 117062. https://doi.org/10.1016/j.applthermaleng.2021.117062
  • Dezan, D. J., Rocha, A. D., Salviano, L. O., & Ferreira, W. G. (2020, September). Thermo-hydraulic optimization of a solar air heater duct with non-periodic rows of rectangular winglet pairs. Sol. Energy, 207, 1172–1190. https://doi.org/10.1016/j.solener.2020.06.112
  • Dong, Z., Liu, P., Xiao, H., Liu, Z., & Liu, W. (2021). A study on heat transfer enhancement for solar air heaters with ripple surface. Renewable Energy, 172, 477–487. https://doi.org/10.1016/j.renene.2021.03.042
  • Ebrahim Momin, A.-M., Saini, J. S., & Solanki, S. C. (2002, July). Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. International Journal of Heat and Mass Transfer, 45(16), 3383–3396. https://doi.org/10.1016/S0017-9310(02)00046-7
  • El Ferouali, H., Doubabi, S., Kouhila, M., & Abdenouri, N. (2018). Exergy for A Better Environment and Improved Sustainability 1. In Green Energy and Technology (pp. 303–317). Springer, Cham. https://doi.org/10.1007/978-3-319-62572-0_21
  • El-Sebaii, A. A., Aboul-Enein, S., Ramadan, M. R. I., Shalaby, S. M., & Moharram, B. M. (2011). Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters. Energy, 36(2), 1076–1086. https://doi.org/10.1016/j.energy.2010.11.042
  • Farhan, A. A., Issam, A., Ali, M., & Ahmed, H. E. (2021). Energetic and exergetic efficiency analysis of a v-corrugated solar air heater integrated with twisted tape inserts. Renewable Energy, 169, 1373–1385. https://doi.org/10.1016/j.renene.2021.01.109
  • Gill, R. S., Hans, V. S., & Singh, R. P. (2021, June). Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs. Applied Thermal Engineering, 191, 116871. https://doi.org/10.1016/j.applthermaleng.2021.116871
  • Gupta, D., Solanki, S. C., & Saini, J. S. (1993). Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates. Solar Energy, 51(1), 31–37. https://doi.org/10.1016/0038-092X(93)90039-Q
  • Ho, C. D., Chang, H., Hsiao, C. F., & Lin, Y. C. (2021). Optimizing thermal efficiencies of double-pass cross-corrugated solar air heaters on various configurations with external recycling. Energies, 14(13), 4019. https://doi.org/10.3390/en14134019
  • Ho, C. D., Hsiao, C. F., Chang, H., Tien, Y. E., & Hong, Z. S. (2017). Efficiency of recycling double-pass V-corrugated solar air collectors. Energies, 10(7), 1–15. https://doi.org/10.3390/en10070875
  • Ho, C. D., Tien, Y. E., & Chang, H. (2016). Performance improvement of a double-pass V-corrugated solar air heater under recycling operation. International Journal of Green Energy, 13(15), 1547–1555. https://doi.org/10.1080/15435075.2016.1206004
  • Jaurker, A. R., Saini, J. S., & Gandhi, B. K. (2006, August). Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. Solar Energy, 80(8), 895–907. https://doi.org/10.1016/j.solener.2005.08.006
  • Jin, D., Quan, S., Zuo, J., & Xu, S. (2019, April). Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs. Renewable Energy, 134, 78–88. https://doi.org/10.1016/j.renene.2018.11.016
  • Karim, M. A., & Hawlader, M. N. A. (2006). Performance evaluation of a v-groove solar air collector for drying applications. Appl. Therm. Eng, 26(1), 121–130. https://doi.org/10.1016/j.applthermaleng.2005.03.017
  • Kumar, A., & Layek, A. (2018, November). Thermo-hydraulic performance of solar air heater having twisted rib over the absorber plate. International Journal of Thermal Sciences, 133, 181–195. https://doi.org/10.1016/j.ijthermalsci.2018.07.026
  • Kumar, S., & Saini, R. P. (2009, May). CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renewable Energy, 34(5), 1285–1291. https://doi.org/10.1016/j.renene.2008.09.015
  • Lin, W., Gao, W., & Liu, T. (2006). A parametric study on the thermal performance of cross-corrugated solar air collectors. Applied Thermal Engineering, 26(10), 1043–1053. https://doi.org/10.1016/j.applthermaleng.2005.10.005
  • Mahanand, Y., & Senapati, J. R. (2021). Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. International Journal of Thermal Sciences, 161, 106747. https://doi.org/10.1016/j.ijthermalsci.2020.106747
  • Maithani, R., Kumar, A., Gholamali Zadeh, P., Safaei, M. R., & Gholamalizadeh, E. (2020, January). Empirical correlations development for heat transfer and friction factor of a solar rectangular air passage with spherical-shaped turbulence promoters. Journal of Thermal Analysis and Calorimetry, 139(2), 1195–1212. https://doi.org/10.1007/s10973-019-08551-8
  • Manjunath, M. S., Karanth, K. V., & Sharma, N. Y. (2017, February). Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater. Energy, 121, 616–630. https://doi.org/10.1016/j.energy.2017.01.032
  • Manjunath, M. S., Karanth, K. V., & Sharma, N. Y. (2018). Numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Sciences, 138-139(February), 219–228. https://doi.org/10.1016/j.ijmecsci.2018.01.037
  • Manjunath, M. S., Venkatesh, R., & Madhwesh, N. (2019). Thermal performance enhancement of flat plate solar air heater using transverse U-shaped turbulator - A numerical study. Journal of Mechanical Engineering Science, 13(3), 5562–5587. https://doi.org/10.15282/jmes.13.3.2019.22.0448
  • Patel, Y. M., Jain, S. V., & Lakhera, V. J. (2021, September). Thermo-hydraulic performance analysis of a solar air heater roughened with discrete reverse NACA profile ribs. International Journal of Thermal Sciences, 167, 107026. International Journal of Thermal SciencesInternational Journal of Thermal Scienceshttps://doi.org/10.1016/j.ijthermalsci.2021.107026
  • Poongavanam, G. K., Panchabikesan, K., Leo, A. J. D., & Ramalingam, V. (2018). Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate. Renewable Energy, 127, 213–229. https://doi.org/10.1016/j.renene.2018.04.056
  • Prakash, C., & Saini, R. P. (2019, September). Heat transfer and friction in rectangular solar air heater duct having spherical and inclined rib protrusions as roughness on absorber plate. Experimental Heat Transfer, 32(5), 469–487. https://doi.org/10.1080/08916152.2018.1543367
  • Promvonge, P., Promthaisong, P., & Skullong, S. (2021, August). Numerical heat transfer in a solar air heater duct with punched delta-winglet vortex generators. Case Studies in Thermal Engineering, 26, 101088. https://doi.org/10.1016/j.csite.2021.101088
  • Promvonge, P., & Skullong, S. (2021). Thermal characteristics in solar air duct with V-shaped flapped-baffles and chamfered-grooves. International Journal of Heat and Mass Transfer, 172, 121220. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121220
  • Sahu, M. K., Pandey, K. M., & Chatterjee, S. (2019, October). Thermo-hydraulic performance of rectangular channel roughened with combined semi-circular and triangular ribs. Heat and Mass Transfer, 55(10), 2889–2900. https://doi.org/10.1007/s00231-019-02630-0
  • Saini, S. K., & Saini, R. P. (2008, December). Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Solar Energy, 82(12), 1118–1130. https://doi.org/10.1016/j.solener.2008.05.010
  • Sharma, N., Tariq, A., & Mishra, M. (2018, September). Detailed heat transfer and fluid flow investigation in a rectangular duct with truncated prismatic ribs. Experimental Thermal and Fluid Science, 96, 383–396. https://doi.org/10.1016/j.expthermflusci.2018.03.029
  • Sharma, N., Tariq, A., & Mishra, M. (2019, January). Experimental investigation of heat transfer enhancement in rectangular duct with pentagonal ribs. Heat Transfer Engineering, 40(1–2), 147–165. https://doi.org/10.1080/01457632.2017.1421135
  • Skullong, S., Promthaisong, P., Promvonge, P., Thianpong, C., & Pimsarn, M. (2018, August). Thermal performance in solar air heater with perforated-winglet-type vortex generator. Sol. Energy, 170, 1101–1117. https://doi.org/10.1016/j.solener.2018.05.093
  • Yadav, A. S., Shrivastava, V., Kumar Chouksey, V., Sharma, A., Kumar Sharma, S., & Kumar Dwivedi, M. (2021). ”Enhanced solar thermal air heater: A numerical investigation”. Materials Today: Proceedings, 47(11), 2777–2783. https://doi.org/10.1016/j.matpr.2021.03.385
  • Zhao, Z., Luo, L., Qiu, D., Wang, Z., & Sundén, B. (2021, June). On the solar air heater thermal enhancement and flow topology using differently shaped ribs combined with delta-winglet vortex generators. Energy, 224, 119944. https://doi.org/10.1016/j.energy.2021.119944