709
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

About the comfort of house-buildings with earth walls in San Carlos, Tamaulipas

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor) show all
Article: 2096524 | Received 29 May 2022, Accepted 28 Jun 2022, Published online: 08 Jul 2022

References

  • Al-Obaidi, A. R., & Sharif, A. (2021). Investigation of the three-dimensional structure, pressure drop, and heat transfer characteristics of the thermohydraulic flow in a circular pipe with different twisted-tape geometrical configurations. Journal of Thermal Analysis and Calorimetry, 143(5), 3533–11. https://doi.org/10.1007/s10973-019-09244-y
  • Al-Obaidi, A. R. (2022). Investigation on effects of varying geometrical configurations on thermal hydraulics flow in a 3D corrugated pipe. International Journal of Thermal Sciences, 171 January 2022 , 107237. https://doi.org/10.1016/j.ijthermalsci.2021.107237
  • Alhamid, J., & Al-Obaidi, R. A. (2021, March). Flow pattern investigation and thermohydraulic performance enhancement in three-dimensional circular pipe under varying corrugation configurations. Journal of Physics. Conference Series, 1845(1), 012061 https://doi.org/10.1088/1742-6596/1845/1/012061. IOP Publishing.
  • Anthony, A. S., & Nath Verma, T. (2021). Numerical analysis of natural convection in a heated room and its implication on thermal comfort. Journal of Thermal Engineering, 7(1), 37–53 https://doi.org/10.18186/thermal.840007.
  • Ávila, F., Puertas, E., & Gallego, R. (2021). Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Construction and Building Materials, 270 8 February 2021 , 121435. https://doi.org/10.1016/j.conbuildmat.2020.121435
  • Ávila, F., Puertas, E., & Gallego, R. (2022). Characterization of the mechanical and physical properties of stabilized rammed earth: A review. Construction and Building Materials, 325 28 March 2022 , 126693. https://doi.org/10.1016/j.conbuildmat.2022.126693
  • Beckett, C. T., Cardell-Oliver, R., Ciancio, D., & Huebner, C. (2018). Measured and simulated thermal behaviour in rammed earth houses in a hot-arid climate. Part A: Structural behaviour. Journal of Building Engineering, 15 January 2018 , 243–251. https://doi.org/10.1016/j.jobe.2017.11.013
  • Dabaieh, M., & Serageldin, A. A. (2020). Earth air heat exchanger, Trombe wall and green wall for passive heating and cooling in premium passive refugee house in Sweden. Energy Conversion and Management, 209 1 April 2020 , 112555. https://doi.org/10.1016/j.enconman.2020.112555
  • Duan, J., Li, N., Peng, J., Wang, C., & Liu, Q. (2022). Full-response model of transient heat transfer of building walls using thermoelectric analogy method. Journal of Building Engineering, 46 1 April 2022 , 103717. https://doi.org/10.1016/j.jobe.2021.103717
  • Fabbri, A., Morel, J. C., & Gallipoli, D. (2018). Assessing the performance of earth building materials: A review of recent developments. RILEM Technical Letters, 3 2018 , 46–58. https://doi.org/10.21809/rilemtechlett.2018.71
  • Giada, G., Caponetto, R., & Nocera, F. (2019). Hygrothermal properties of raw earth materials: A literature review. Sustainability, 11(19), 5342. https://doi.org/10.3390/su11195342
  • Giuffrida, G., Caponetto, R., & Cuomo, M. (2019, July). An overview on contemporary rammed earth buildings: Technological advances in production, construction and material characterization. In IOP conference series: Earth and Environmental Science (Vol. 296, No. 1, p. 012018). IOP Publishing.
  • Giuffrida, G., Caponetto, R., Nocera, F., & Cuomo, M. (2021). Prototyping of a novel rammed earth technology. Sustainability, 13(21), 11948. https://doi.org/10.3390/su132111948
  • Gomes, M. I., Faria, P., & Gonçalves, T. D. (2018). Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fibers. Journal of Cleaner Production, 172 20 January 2018 , 2401–2414. https://doi.org/10.1016/j.jclepro.2017.11.170
  • Kumar, D., Zou, P. X., Memon, R. A., Alam, M. M., Sanjayan, J. G., & Kumar, S. (2020). Life-cycle cost analysis of building wall and insulation materials. Journal of Building Physics, 43(5), 428–455. https://doi.org/10.1177/1744259119857749
  • Lee, Y. H., Amran, M., Lee, Y. Y., Kueh, A. B. H., Kiew, S. F., Fediuk, R., Vatin, N., & Vasilev, Y. (2021). Thermal behavior and energy efficiency of modified concretes in the tropical climate: A systemic review. Sustainability, 13(21), 11957. https://doi.org/10.3390/su132111957
  • Li, E., & Zhu, J. (2022). Parametric analysis of the mechanism of creating indoor thermal environment in traditional houses in Lhasa. Building and Environment, 207B January 2022 , 108510. https://doi.org/10.1016/j.buildenv.2021.108510
  • Liu, L., Hou, W., He, Y., & Qu, S. (2019, July). Analysis of heat transfer performance of precast concrete sandwich insulation wall. In IOP conference series: earth and environmental science (Vol. 295, No. 4, p. 042119). IOP Publishing.
  • Mandelbrot, B. (1977). Fractals. Freeman. Herself.
  • Nayak, S. R., Mishra, J., & Palai, G. (2019). Analysing roughness of surface through fractal dimension: A review. Image and Vision Computing, 89 September 2019 , 21–34. https://doi.org/10.1016/j.imavis.2019.06.015
  • Neya, I., Yamegueu, D., Coulibaly, Y., Messan, A., & Ouedraogo, A. L. S. N. (2021). Impact of insulation and wall thickness in compressed earth buildings in hot and dry tropical regions. Journal of Building Engineering, 33 January 2021 , 101612. https://doi.org/10.1016/j.jobe.2020.101612
  • Resano, D., Rodriguez, R., & Guillen, O. “Passive comfort strategies for typical peruvian meso-andean houses.” IOP conference series: earth and environmental science. Vol. 943. No. 1. IOP Publishing, 2021.
  • Rosti, B., Omidvar, A., & Monghasemi, N. (2020). Optimal insulation thickness of common classic and modern exterior walls in different climate zones of Iran. Journal of Building Engineering, 27 January 2020 , 100954. https://doi.org/10.1016/j.jobe.2019.100954
  • Staniec, M., & Nowak, H. (2016). The application of energy balance at the bare soil surface to predict annual soil temperature distribution. Energy and Buildings, 127 1 September 2016 , 56–65. https://doi.org/10.1016/j.enbuild.2016.05.047
  • Suarez-Dominguez, E.J., Aranda-Jimenez, Y.G., Palacio-Perez, A., and Izquierdo-Kulich, E. F. (2015aa). Determination of time and temperature profiles in a poured earth heat transfer process. REVISTA CUBANA DE INGENIERIA, 6 1 , 23–28 https://rci.cujae.edu.cu/index.php/rci/article/view/315.
  • Suárez-Domínguez, E. J., Aranda-Jiménez, Y. G., Palacio-Pérez, A., Rodríguez-Valdes, A., and Izquierdo-Kulich, E. F. (2015bb). Oscillating temperature profile model for a poured earth wall. Concrete and Cement. Research and Development, 7(1), 44–51 http://www.scielo.org.mx/scielo.php?pid=S2007-30112015000200003&script=sci_arttext&tlng=en.
  • Vandenberg, S., & Osborne, C. F. (1992). Digital image processing techniques, fractal dimensionality and scale-space applied to surface roughness. Wear, 159(1), 17–30. https://doi.org/10.1016/0043-1648(92)90281-C
  • Vazquez-Ruiz, A., Navarro, J. M. A., Hinojosa, J. F., & Xamán, J. P. (2021). Effect of the solar roof chimney position on heat transfer in a room. International Journal of Mechanical Sciences, 209 1 November 2021 , 106700. https://doi.org/10.1016/j.ijmecsci.2021.106700
  • Xue, F., Zhao, J., & Jiang, S. (2021)). Building thermal comfort research based on energy-saving concept. Advances in Materials Science and Engineering, 2021, 1–11. https://doi.org/10.1155/2021/7132437
  • Yamamoto, T., Ozaki, A., Kaoru, S., & Taniguchi, K. (2021). Analysis method based on coupled heat transfer and CFD simulations for buildings with thermally complex building envelopes. Building and Environment, 191 15 March 2021 , 107521. https://doi.org/10.1016/j.buildenv.2020.107521
  • Yang, J., Fu, H., & Qin, M. (2015). Evaluation of different thermal models in ENERGYPLUS for calculating moisture effects on building energy consumption in different climate conditions. Procedia Engineering, 121 2015 , 1635–1641. https://doi.org/10.1016/j.proeng.2015.09.194
  • Zhang, X., Lv, J., Dawuda, M. M., Xie, J., Yu, J., Gan, Y., Zhang, J., Tang, Z., & Li, J. (2019). Innovative passive heat-storage walls improve thermal performance and energy efficiency in Chinese solar greenhouses for non-arable lands. Solar Energy, 190 15 September 2019 , 561–575. https://doi.org/10.1016/j.solener.2019.08.056