2,449
Views
5
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Physical, thermal, mechanical, sound absorption and vibration damping characteristics of natural fiber reinforced composites and hybrid fiber reinforced composites: A review

, & ORCID Icon | (Reviewing editor)
Article: 2107770 | Received 01 Jun 2022, Accepted 26 Jul 2022, Published online: 16 Aug 2022

References

  • Abd El-baky, M. A. (2019, May). Experimental investigation on impact performance of glass–polypropylene hybrid composites: Effect of water aging. Journal of Thermoplastic Composite Materials, 32(5), 657–30. https://doi.org/10.1177/0892705718772876
  • Afzaluddin, A., Jawaid, M., Salit, M. S., & Ishak, M. R. (2019, January). Physical and mechanical properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(1), 950–959. https://doi.org/10.1016/j.jmrt.2018.04.024
  • Akil, H. M., Santulli, C., Sarasini, F., Tirillò, J., & Valente, T. (2014, April). Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Composites Science and Technology, 94, 62–70. https://doi.org/10.1016/j.compscitech.2014.01.017
  • Alsaadi, M., Erkliğ, A., & Abbas, M. (2020, July). Effect of clay nanoparticles on the mechanical and vibration characteristics of intraply aramid/carbon fiber reinforced epoxy composite. Polymer Composites, 41(7), 2704–2712. https://doi.org/10.1002/pc.25568
  • Angrizani, C. C., Ornaghi, H. L., Zattera, A. J., & Amico, S. C. (2017, March). Thermal and mechanical investigation of interlaminate glass/curaua hybrid polymer composites. Journal of Natural Fibers, 14(2), 271–277. https://doi.org/10.1080/15440478.2016.1193091
  • Apeagyei, A. K., Grenfell, J. R. A., & Airey, G. D. (2015, May). Application of Fickian and non-Fickian diffusion models to study moisture diffusion in asphalt mastics. Materials and Structures/Materiaux Et Constructions, 48(5), 1461–1474. https://doi.org/10.1617/s11527-014-0246-2
  • Asim, M., Paridah, M. T., Saba, N., Jawaid, M., Alothman, O. Y., Nasir, M., & Almutairi, Z. (2018, October). Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Composite Structures, 202, 1330–1338. https://doi.org/10.1016/j.compstruct.2018.06.068
  • Assarar, M., Zouari, W., Sabhi, H., Ayad, R., & Berthelot, J. M. (2015, November). Evaluation of the damping of hybrid carbon-flax reinforced composites. Composite Structures, 132, 148–154. https://doi.org/10.1016/j.compstruct.2015.05.016
  • Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., & Alothman, O. Y. (2018, October). Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Composite Structures, 202, 954–958. https://doi.org/10.1016/j.compstruct.2018.05.009
  • Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., Ansari, M. N. M., & Ilyas, R. A. (2019, September). Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 3726–3732. https://doi.org/10.1016/j.jmrt.2019.06.032
  • Azlina Ramlee, N., Jawaid, M., Abdul Karim Yamani, S., Syams Zainudin, E., & Alamery, S. (2021, March). Effect of surface treatment on mechanical, physical and morphological properties of oil palm/bagasse fiber reinforced phenolic hybrid composites for wall thermal insulation application. Construction and Building Materials, 276, 122239. https://doi.org/10.1016/j.conbuildmat.2020.122239
  • Bakhori, S. N. M., Hassan, M. Z., Bakhori, N. M., Rashedi, A., Mohammad, R., Daud, M. Y. M., Aziz, S. A., Ramlie, F., Kumar, A., & J, N. (2022, June). Mechanical properties of PALF/kevlar-reinforced unsaturated polyester hybrid composite laminates. Polymers (Basel), 14(12), 2468. https://doi.org/10.3390/polym14122468
  • Balakrishnan, P., John, M. J., Pothen, L., Sreekala, M. S., & Thomas, S. (2016). Natural fibre and polymer matrix composites and their applications in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering (pp. 365–383). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-100037-3.00012-2
  • Batra, N. K., & Dikshit, I. (2019). Evaluation of mechanical properties of polytherimide reinforced carbon/glass/aramid hybrid composites. Materials Today: Proceedings, 33 3 , 1472–1476. https://doi.org/10.1016/j.matpr.2020.02.009
  • Bennet, C., Rajini, N., Jappes, J. W., Siva, I., Sreenivasan, V. S., & Amico, S. C. (2015, February). Effect of the stacking sequence on vibrational behavior of Sansevieria cylindrica/coconut sheath polyester hybrid composites. Journal of Reinforced Plastics and Composites, 34(4), 293–306. https://doi.org/10.1177/0731684415570683
  • Bhatia, S., Angra, S., & Khan, S. (2021). A review on mechanical and tribological characterization of boron carbide reinforced epoxy composite. Advanced Composite Materials, 30(4), 307–337. https://doi.org/10.1080/09243046.2020.1759482
  • Bhoopathi, R., Ramesh, M., & Deepa, C. (2014). Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites. Procedia Engineering, 97, 2032–2041. https://doi.org/10.1016/j.proeng.2014.12.446
  • Boopalan, M., Niranjanaa, M., & Umapathy, M. J. (2013, August). Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Composites Part B: Engineering, 51, 54–57. https://doi.org/10.1016/j.compositesb.2013.02.033
  • Bozkurt, Ö. Y., & Gökdemir, M. E. (2018, December). Effect of basalt fiber hybridization on the vibration-damping behavior of carbon fiber/epoxy composites. Polymer Composites, 39(S4), E2274–E2282. https://doi.org/10.1002/pc.24606
  • Braga, R. A., & Magalhaes, P. A. A. (2015, June). Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Materials Science and Engineering C, 56, 269–273. https://doi.org/10.1016/j.msec.2015.06.031
  • Bulut, M., Alsaadi, M., Erkliğ, A., & Alrawi, H. (2019, May). The effects of S-glass fiber hybridization on vibration-damping behavior of intraply woven carbon/aramid hybrid composites for different lay-up configurations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(9), 3220–3231. https://doi.org/10.1177/0954406218813188
  • Bulut, M., Bozkurt, Ö. Y., Erkliğ, A., Yaykaşlı, H., & Özbek, Ö. (2020, February). Mechanical and dynamic properties of basalt fiber-reinforced composites with nanoclay particles. Arabian Journal for Science and Engineering, 45(2), 1017–1033. https://doi.org/10.1007/s13369-019-04226-6
  • Bulut, M., Erkliǧ, A., & Yeter, E. (2016, June). Experimental investigation on influence of kevlar fiber hybridization on tensile and damping response of kevlar/glass/epoxy resin composite laminates. Journal of Composite Materials, 50(14), 1875–1886. https://doi.org/10.1177/0021998315597552
  • Calabrese, L., Fiore, V., Scalici, T., & Valenza, A. (2019, April). Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications. Journal of Applied Polymer Science, 136(14). https://doi.org/10.1002/app.47203
  • Chandrasekar, M., Siva, I., Kumar, T. S. M., Senthilkumar, K., Siengchin, S., & Rajini, N. (2020, November). Influence of fibre inter-ply orientation on the mechanical and free vibration properties of banana fibre reinforced polyester composite laminates. Journal of Polymers and the Environment, 28(11), 2789–2800. https://doi.org/10.1007/s10924-020-01814-8
  • Chaudhary, V., Bajpai, P. K., & Maheshwari, S. (2018, January). Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. Journal of Natural Fibers, 15(1), 80–97. https://doi.org/10.1080/15440478.2017.1320260
  • Chaudhary, V., Bajpai, P. K., & Maheshwari, S. (2020, January). Effect of moisture absorption on the mechanical performance of natural fiber reinforced woven hybrid bio-composites. Journal of Natural Fibers, 17(1), 84–100. https://doi.org/10.1080/15440478.2018.1469451
  • Chawla, K. K. (2012). Composite materials: Science and engineering (3rd ed.). Springer. https://doi.org/10.1007/978-0-387-74365-3
  • Chee, S. S., Jawaid, M., Sultan, M. T. H., Alothman, O. Y., & Abdullah, L. C. (2019, July). Evaluation of the hybridization effect on the thermal and thermo-oxidative stability of bamboo/kenaf/epoxy hybrid composites. Journal of Thermal Analysis and Calorimetry, 137(1), 55–63. https://doi.org/10.1007/s10973-018-7918-z
  • Cihan, M., Sobey, A. J., & Blake, J. I. R. (2019, March). Mechanical and dynamic performance of woven flax/E-glass hybrid composites. Composites Science and Technology, 172, 36–42. https://doi.org/10.1016/j.compscitech.2018.12.030
  • Costa, U. O., Nascimento, L. F. C., Garcia, J. M., Bezerra, W. B. A., & Monteiro, S. N. (2020, January). Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. Journal of Materials Research and Technology, 9(1), 373–382. https://doi.org/10.1016/j.jmrt.2019.10.066
  • Dasari, S., Lohani, S., Gangineni, P. K., & Prusty, R. K. (2021, September). Effects of cryogenic aging on flexural behavior of advanced inter-ply hybrid fiber-reinforced polymer composites. Transactions of the Indian Institute of Metals, 74(9), 2171–2183. https://doi.org/10.1007/s12666-021-02288-5
  • Devireddy, S. B. R., & Biswas, S. (2016, August). Physical and thermal properties of unidirectional banana-jute hybrid fiber-reinforced epoxy composites. Journal of Reinforced Plastics and Composites, 35(15), 1157–1172. https://doi.org/10.1177/0731684416642877
  • Devireddy, S. B. R., & Biswas, S. (2017, July). Physical and mechanical behavior of unidirectional banana/jute fiber reinforced epoxy based hybrid composites. Polymer Composites, 38(7), 1396–1403. https://doi.org/10.1002/pc.23706
  • Dhakal, H. N., Zhang, Z. Y., & Richardson, M. O. W. (2007, June). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67(7–8), 1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019
  • Dhandapani, N., & Megalingam, A. (2021). Mechanical and sound absorption behavior of sisal and palm fiber reinforced hybrid composites. Journal of Natural Fibers, 1–14. https://doi.org/10.1080/15440478.2020.1863893
  • Espert, A., Vilaplana, F., & Karlsson, S. (2004, November). Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied Science and Manufacturing, 35(11), 1267–1276. https://doi.org/10.1016/j.compositesa.2004.04.004
  • Etaati, A., Mehdizadeh, S. A., Wang, H., & Pather, S. (2014, February). Vibration damping characteristics of short hemp fibre thermoplastic composites. Journal of Reinforced Plastics and Composites, 33(4), 330–341. https://doi.org/10.1177/0731684413512228
  • Felipe, R. C. T. S., Felipe, R. N. B., Batista, A. C. M. C., & Aquino, E. M. F. (2019, October). Influence of environmental aging in two polymer-reinforced composites using different hybridization methods: Glass/kevlar fiber hybrid strands and in the weft and warp alternating kevlar and glass fiber strands. Composites Part B: Engineering, 174, 106994. https://doi.org/10.1016/j.compositesb.2019.106994
  • Fiore, V., Sanfilippo, C., & Calabrese, L. (2019, December). Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment. Polymer Testing, 80, 106100. https://doi.org/10.1016/j.polymertesting.2019.106100
  • Fiore, V., Scalici, T., Badagliacco, D., Enea, D., Alaimo, G., & Valenza, A. (2017, January). Aging resistance of bio-epoxy jute-basalt hybrid composites as novel multilayer structures for cladding. Composite Structures, 160, 1319–1328. https://doi.org/10.1016/j.compstruct.2016.11.025
  • Fiore, V., Scalici, T., Sarasini, F., Tirilló, J., Calabrese, L. (2017, May). Salt-fog spray aging of jute-basalt reinforced hybrid structures: Flexural and low velocity impact response. Composites Part B: Engineering, 116, 99–112. https://doi.org/10.1016/j.compositesb.2017.01.031
  • Flynn, J., Amiri, A., & Ulven, C. (2016, July). Hybridized carbon and flax fiber composites for tailored performance. Materials and Design, 102, 21–29. https://doi.org/10.1016/j.matdes.2016.03.164
  • Forintos, N., & Czigany, T. (2019, April 1). Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers – A short review. Composites Part B: Engineering, 162, 331–343. Elsevier Ltd. https://doi.org/10.1016/j.compositesb.2018.10.098
  • Ghasemzadeh-Barvarz, M., Duchesne, C., & Rodrigue, D. (2015, December). Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites. Journal of Composite Materials, 49(30), 3781–3798. https://doi.org/10.1177/0021998314568576
  • Ghouti, H. A. (2018, November). Multifunctional hybrid composites with enhanced mechanical and thermal properties based on polybenzoxazine and chopped Kevlar/carbon hybrid fibers. Polymers (Basel), 10(12), 1308. https://doi.org/10.3390/polym10121308
  • Gokulkumar, S., Thyla, P. R., Prabhu, L., & Sathish, S. (2021). Characterization and comparative analysis on mechanical and acoustical properties of camellia sinensis/ananas comosus/glass fiber hybrid polymer composites. Journal of Natural Fibers, 18(7), 978–994. https://doi.org/10.1080/15440478.2019.1675215
  • Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F. (2014). Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures. Materials and Design, 56, 714–724. https://doi.org/10.1016/j.matdes.2013.11.043
  • Hariprasad, K., Ravichandran, K., Jayaseelan, V., & Muthuramalingam, T. (2020). Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. Journal of Materials Research and Technology, 9(6), 14029–14035. https://doi.org/10.1016/j.jmrt.2020.09.112
  • Haris, N. I. N., Ilyas, R. A., Mohamad Zaki Hassan, S. M. S., Afdzaluddin, A., Rijal Jamaludin, K., Ahmad Zaki, S., & Ramlie, F. (2021). Dynamic Mechanical Properties and Thermal Properties of Longitudinal Basalt/Woven Glass Fiber Reinforced Unsaturated Polyester Hybrid Composites. Polymers, 13(19), 3343. https://doi.org/10.3390/polym13193343
  • Haris, A., Kureemun, U., Tran, L. Q. N., & Lee, H. P. (2019, July). Noise reduction capability of hybrid flax fabric-reinforced polypropylene-based composites. Advanced Composite Materials, 28(4), 335–346. https://doi.org/10.1080/09243046.2018.1533347
  • Harish, S., Michael, D. P., Bensely, A., Lal, D. M., & Rajadurai, A. (2009, January). Mechanical property evaluation of natural fiber coir composite. Materials Characterization, 60(1), 44–49. https://doi.org/10.1016/j.matchar.2008.07.001
  • Hassan, T. (2020, March). Acoustic, mechanical and thermal properties of green composites reinforced with natural fiberswaste. Polymers (Basel), 12(3), 654. https://doi.org/10.3390/polym12030654
  • Herrera-Franco, P. J., & Valadez-González, A. (2005, December). A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering, 36(8), 597–608. https://doi.org/10.1016/j.compositesb.2005.04.001
  • Huang, J. K., & Bin Young, W. (2019, June). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 166, 272–283. https://doi.org/10.1016/j.compositesb.2018.12.013
  • Ibrahim, M. I. J., Sapuan, S. M., Zainudin, E. S., & Zuhri, M. Y. M. (2020, January). Preparation and characterization of cornhusk/sugar palm fiber reinforced cornstarch-based hybrid composites. Journal of Materials Research and Technology, 9(1), 200–211. https://doi.org/10.1016/j.jmrt.2019.10.045
  • Ismail, A. S., Jawaid, M., & Naveen, J. (2019, July). Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. Materials, 12(13), 2094. https://doi.org/10.3390/ma12132094
  • Jawaid, M., Alothman, O. Y., Saba, N., Tahir, P. M., & Khalil, H. P. S. A. (2015, September). Effect of fibers treatment on dynamic mechanical and thermal properties of epoxy hybrid composites. Polymer Composites, 36(9), 1669–1674. https://doi.org/10.1002/pc.23077
  • Jayamani, E., Hamdan, S., Bin Bakri, M. K., Kok Heng, S., Rahman, M. R., & Kakar, A. (2016, May). Analysis of natural fiber polymer composites: Effects of alkaline treatment on sound absorption. Journal of Reinforced Plastics and Composites, 35(9), 703–711. https://doi.org/10.1177/0731684415620046
  • Jesthi, D. K., & Nayak, R. K. (2019, October). Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Composites Part B: Engineering, 174, 106980. https://doi.org/10.1016/j.compositesb.2019.106980
  • Karthi, N., Kumaresan, K., Rajeshkumar, G., Gokulkumar, S., & Sathish, S. (2021). Tribological and thermo-mechanical performance of chemically modified musa acuminata/corchorus capsularis reinforced hybrid composites. Journal of Natural Fibers, 1–14. https://doi.org/10.1080/15440478.2020.1870614
  • Karthik, K., Rajamani, D., Manimaran, A., & Udayaprakash, J. (2020). Evaluation of tensile properties on glass/carbon/kevlar fiber reinforced hybrid composites. Materials Today: Proceedings, 39, 1655–1660. https://doi.org/10.1016/j.matpr.2020.06.049
  • Khieng, T. K., Debnath, S., Ting Chaw Liang, E., Anwar, M., Pramanik, A., & Basak, A. K. (2021, May 1). A review on mechanical properties of natural fibre reinforced polymer composites under various strain rates. Journal of Composites Science, 5(5), 130. MDPI AG. https://doi.org/10.3390/jcs5050130
  • Koruk, H., Ozcan, A. C., Genc, G., & Sanliturk, K. Y. (2021). Jute and luffa fiber-reinforced biocomposites: Effects of sample thickness and fiber/resin ratio on sound absorption and transmission loss performance. Journal of Natural Fibers, 1–16. https://doi.org/10.1080/15440478.2021.1907832
  • Kufel, A., & Kuciel, S. (2020, January). Hybrid composites based on polypropylene with basalt/hazelnut shell fillers: The influence of temperature, thermal aging, and water absorption on mechanical properties. Polymers (Basel), 12(1). https://doi.org/10.3390/polym12010018
  • Kumar, G. R., Hariharan, V., & Saravanakumar, S. S. (2021). Enhancing the Free Vibration Characteristics of Epoxy Polymers Using Sustainable phoenix Sp. Fibers and nano-clay for machine tool applications. Journal of Natural Fibers, 18(4), 531–538. https://doi.org/10.1080/15440478.2019.1636740
  • Kumar, S., Patel, V. K., Mer, K. K. S., Gangil, B., Singh, T., & Fekete, G. (2021). Himalayan natural fiber-reinforced epoxy composites: Effect of grewia optiva/bauhinia vahlii fibers on physico-mechanical and dry sliding wear behavior. Journal of Natural Fibers, 18(2), 192–202. https://doi.org/10.1080/15440478.2019.1612814
  • Kumar, K. S., Siva, I., Rajini, N., Jeyaraj, P., & Jappes, J. W. (2014, October). Tensile, impact, and vibration properties of coconut sheath/sisal hybrid composites: Effect of stacking sequence. Journal of Reinforced Plastics and Composites, 33(19), 1802–1812. https://doi.org/10.1177/0731684414546782
  • le Guen, M. J., Newman, R. H., Fernyhough, A., Emms, G. W., & Staiger, M. P. (2016, March). The damping-modulus relationship in flax-carbon fibre hybrid composites. Composites Part B: Engineering, 89, 27–33. https://doi.org/10.1016/j.compositesb.2015.10.046
  • Lee, H. P., Ng, B. M. P., Rammohan, A. V., & Tran, L. Q. N. (2017, January). An investigation of the sound absorption properties of flax/epoxy composites compared with glass/epoxy composites. Journal of Natural Fibers, 14(1), 71–77. https://doi.org/10.1080/15440478.2016.1146643
  • Li, C., Xian, G., & Li, H. (2019, July). Combined effects of temperature, hydraulic pressure and salty concentration on the water uptake and mechanical properties of a carbon/glass fibers hybrid rod in salty solutions. Polymer Testing, 76, 19–32. https://doi.org/10.1016/j.polymertesting.2019.02.034
  • Liao, M., Yang, Y., Yu, Y., & Hamada, H. (2012). HYDROTHERMAL AGEING MECHANISM OF NATURAL FIBER REINFORCED COMPOSITE IN HOT WATER. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, ASME, Houston, Texas, USA, November 9-15, 2012. 1371–1378. Available: http://www.asme.org/about-asme/terms-of-use
  • Liu, S.-J. (2012). Injection molding in polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (Pmcs) (pp. 15–46). Woodhead publishing series in Composite Science and Engineering. https://doi.org/10.1533/9780857096258.1.13
  • Mahesha, G. T., Satish, S. B., Vijaya, K. M., & Bhat, K. S. (2016, September). Preparation of unidirectional grewia serrulata fiber-reinforced polyester composites and evaluation of tensile and flexural properties. Journal of Natural Fibers, 13(5), 547–554. https://doi.org/10.1080/15440478.2015.1081575
  • Mansor, M. R., Nurfaizey, A. H., Tamaldin, N., & Nordin, M. N. A. (2019). Natural fiber polymer composites: Utilization in aerospace engineering. In Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and Other Industrial Applications (pp. 203–224). Woodhead publishing series in Composite Science and Engineering. https://doi.org/10.1016/B978-0-08-102426-3.00011-4
  • Marichelvam, M. K., Kandakodeeswaran, K., & Geetha, M. (2020). Mechanical and acoustic properties of bagasse–coconut coir based hybrid reinforced composites. Journal of Natural Fibers, 1–10. https://doi.org/10.1080/15440478.2020.1854143
  • Mejri, M., Toubal, L., Cuillière, J. C., & François, V. (2018, March). Hygrothermal aging effects on mechanical and fatigue behaviors of a short- natural-fiber-reinforced composite. International Journal of Fatigue, 108, 96–108. https://doi.org/10.1016/j.ijfatigue.2017.11.004
  • Mohana Krishnudu, D., Sreeramulu, D., & Reddy, P. V. (2020, December). Alkali treatment effect: Mechanical, Thermal, Morphological, and Spectroscopy Studies on Abutilon Indicum Fiber-Reinforced Composites. Journal of Natural Fibers, 17(12), 1775–1784. https://doi.org/10.1080/15440478.2019.1598917
  • Monticeli, F. M., Ornaghi, H. L., Cornelis Voorwald, H. J., & Cioffi, M. O. H. (2019, October). Three-dimensional porosity characterization in carbon/glass fiber epoxy hybrid composites. Composites Part A: Applied Science and Manufacturing, 125, 105555. https://doi.org/10.1016/j.compositesa.2019.105555
  • Munde, Y. S., Ingle, R. B., & Siva, I. (2018, October). Investigation to appraise the vibration and damping characteristics of coir fibre reinforced polypropylene composites. Advances in Materials and Processing Technologies, 4(4), 639–650. https://doi.org/10.1080/2374068X.2018.1488798
  • Murugan, R., Nithyanandan, N., & Sathya, V. (2019). Influence of Stacking Sequence on Free Vibration Characteristics of Epoxy-Based Flax/Sisal Composite Beams. In Advances in Materials and Metallurgy (pp. 171–183). Lecture notes in Mechanical Engineering, Springer. https://doi.org/10.1007/978-981-13-1780-4_18
  • Nanthakumar, K., Yeng, C. M., & Chun, K. S. (2020, March). Tensile and water absorption properties of solvent cast biofilms of sugarcane leaves fibre-filled poly(lactic) acid. Journal of Thermoplastic Composite Materials, 33(3), 289–304. https://doi.org/10.1177/0892705718805526
  • Naveen, J., Jawaid, M., Zainudin, E. S., Sultan, M. T. H., & Yahaya, R. (2019, January). Mechanical and moisture diffusion behaviour of hybrid Kevlar/Cocos nucifera sheath reinforced epoxy composites. Journal of Materials Research and Technology, 8(1), 1308–1318. https://doi.org/10.1016/j.jmrt.2018.07.023
  • Naveen, J., Jawaid, M., Zainudin, E. S., Sultan, M. T. H., Yahaya, R., & Abdul Majid, M. S. (2019, July). Thermal degradation and viscoelastic properties of kevlar/cocos nucifera sheath reinforced epoxy hybrid composites. Composite Structures, 219, 194–202. https://doi.org/10.1016/j.compstruct.2019.03.079
  • Nimanpure, S., Hashmi, S. A. R., Kumar, R., Bhargaw, H. N., Kumar, R., Nair, P., & Naik, A. (2019, February). Mechanical, electrical, and thermal analysis of sisal fibril/kenaf fiber hybrid polyester composites. Polymer Composites, 40(2), 664–676. https://doi.org/10.1002/pc.24706
  • Norhasnan, N. H. A., Hassan, M. Z., Nor, A. F. M., Zaki, S. A., Dolah, R., Jamaludin, K. R., & Aziz, S. A. (2021, April). Physicomechanical properties of rice husk/coco peat reinforced acrylonitrile butadiene styrene blend composites. Polymers (Basel), 13(7), 1171. https://doi.org/10.3390/polym13071171
  • Nurazzi, N. M., Asyraf, M. R. M., Fathimah, Athiyah S, Shazleen, S. S., Rafiqah, S. A., Harussani, M. M., Kamarudin, S. H., Razman, M. R., Rahmah, M, Zainuddin, E. S., Ilyas, R. A., Aisyah, H. A., Norrrahim, M. N. F., Abdullah, N, Sapuan, S. M., & Khalina, A. (2021, July 1). A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers, 13(13), 1–47. MDPI AG. https://doi.org/10.3390/polym13132170.
  • Palanikumar, K., & Subbiah, V. (2019, May). Bio caryota fiber reinforced polymer composites: Mechanical properties and vibration behavior analysis. Journal of Bionic Engineering, 16(3), 480–491. https://doi.org/10.1007/s42235-019-0039-y
  • Peng, L., Song, B., Wang, J., & Wang, D. (2015). Mechanic and acoustic properties of the sound-absorbing material made from natural fiber and polyester. Advances in Materials Science and Engineering, 2015, 1–5. https://doi.org/10.1155/2015/274913
  • Prabhakaran, S., Krishnaraj, V., Senthil Kumar, M., & Zitoune, R. (2014). Sound and vibration damping properties of flax fiber reinforced composites. Procedia Engineering, 97, 573–581. https://doi.org/10.1016/j.proeng.2014.12.285
  • Prabhu, L., Krishnaraj, V., Gokulkumar, S., Sathish, S., Sanjay, M. R., & Siengchin, S. (2020). Mechanical, chemical and sound absorption properties of glass/kenaf/waste tea leaf fiber-reinforced hybrid epoxy composites. Journal of Industrial Textiles, 1–27. https://doi.org/10.1177/1528083720957392
  • Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., Sanjay, M. R., & Siengchin, S. (2020, December). Mechanical and acoustic properties of alkali-treated sansevieria ehrenbergii/camellia sinensis fiber–reinforced hybrid epoxy composites: Incorporation of glass fiber hybridization. Applied Composite Materials, 27(6), 915–933. https://doi.org/10.1007/s10443-020-09840-4
  • Priyanka, P., Dixit, A., & Mali, H. S. (2017, November). High-Strength hybrid textile composites with carbon, kevlar, and e-glass fibers for impact-resistant structures. A review. Mechanics of Composite Materials, 53(5), 685–704. https://doi.org/10.1007/s11029-017-9696-2
  • Raja, D. B. P., Vettivel, S. C., & Prabhu, A. S. (2021, January). Influence of nanoparticles on thermal, mechanical and 3D analysis of hybrid bamboo/glass fibre-reinforced polymer composites. Transactions of the Indian Institute of Metals, 74(1), 179–193. https://doi.org/10.1007/s12666-020-02111-7
  • Rajamanickam, S. K., Ravichandran, V., Sattanathan, S., Ganapathy, D., Arockia Dhanraj, J., & Hindustan Institute of Technology and Science, Sri Krishna College of Engineering and Technology. (2019). Experimental investigation on mechanical properties and vibration damping frequency factor of kenaf fiber reinforced epoxy composite. International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility, SAE International. https://doi.org/10.4271/2019-28-0167
  • Rajesh, M., Pitchaimani, J., & Rajini, N. (2016). Free vibration characteristics of banana/sisal natural fibers reinforced hybrid polymer composite beam. Procedia Engineering, 144, 1055–1059. https://doi.org/10.1016/j.proeng.2016.05.056
  • Ramakrishnan, S., Krishnamurthy, K., Rajeshkumar, G., & Asim, M. (2021, April). Dynamic mechanical properties and free vibration characteristics of surface modified jute fiber/nano-clay reinforced epoxy composites. Journal of Polymers and the Environment, 29(4), 1076–1088. https://doi.org/10.1007/s10924-020-01945-y
  • Ramesh, V., & Anand, P. (2020). Evaluation of mechanical properties on Kevlar/Basalt fiber reinforced hybrid composites. Materials Today: Proceedings, 39, 1494–1496. https://doi.org/10.1016/j.matpr.2020.05.406
  • Rana, A. K., Mandal, A., & Bandyopadhyay, S. (2003). Short jute fiber reinforced polypropylene composites: Effect of compatibiliser, impact modifier and fiber loading. Composites Science and Technology, 63 (6), 801–806. Available. www.elsevier.com/locate/compscitech
  • Ravishankar, B., Nayak, S. K., & Kader, M. A. (2019, September). Hybrid composites for automotive applications – A review. Journal of Reinforced Plastics and Composites, 38(18), 835–845. https://doi.org/10.1177/0731684419849708
  • Safri, S. N. A., Sultan, M. T. H., & Shah, A. U. M. (2020). Characterization of benzoyl treated sugar palm/glass fibre hybrid composites. Journal of Materials Research and Technology, 9(5), 11563–11573. https://doi.org/10.1016/j.jmrt.2020.08.057
  • Sahu, P., & Gupta, M. K. (2020, January 1). A review on the properties of natural fibres and its bio-composites: Effect of alkali treatment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(1), 198–217. SAGE Publications Ltd. https://doi.org/10.1177/1464420719875163
  • Sain, M., Suhara, P., Law, S., & Bouilloux, A. (2005). Interface modification and mechanical properties of natural fiber-polyolefin composite products. Journal of Reinforced Plastics and Composites, 24(2), 121–130. https://doi.org/10.1177/0731684405041717
  • Saravanan, K., & Prakash, C. (2021). Study of acoustic properties of chicken feather fibre (CFF) and its hybrid composites. Journal of Natural Fibers, 18(4), 502–509. https://doi.org/10.1080/15440478.2019.1629560
  • Sarikaya, E., Çallioğlu, H., & Demirel, H. (2019, June). Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Composites Part B: Engineering, 167, 461–466. https://doi.org/10.1016/j.compositesb.2019.03.020
  • Sathishkumar, T. P., Navaneethakrishnan, P., & Shankar, S. (2012, June). Tensile and flexural properties of snake grass natural fiber reinforced isophthalic polyester composites. Composites Science and Technology, 72(10), 1183–1190. https://doi.org/10.1016/j.compscitech.2012.04.001
  • Scida, D., Assarar, M., Poilâne, C., & Ayad, R. (2013, May). Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Composites Part B: Engineering, 48, 51–58. https://doi.org/10.1016/j.compositesb.2012.12.010
  • Senthil Kumar, K., Siva, I., Jeyaraj, P., Winowlin Jappes, J. T., Amico, S. C., & Rajini, N. (2014). Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Materials and Design, 56, 379–386. https://doi.org/10.1016/j.matdes.2013.11.039
  • Sharan Gupta, U., Dharkar, A., Dhamarikar, M., Choudhary, A., Wasnik, D., Chouhan, P., Tiwari, S., & Namdeo, R. (2021). Study on the effects of fiber orientation on the mechanical properties of natural fiber reinforced epoxy composite by finite element method. Materials Today: Proceedings, 45, 7885–7893. https://doi.org/10.1016/j.matpr.2020.12.614
  • Singh, V. K., & Mukhopadhyay, S. (2020). Studies on the effect of hybridization on sound insulation of coir-banana-polypropylene hybrid biocomposites. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2020.1745116
  • Singh, J. I. P., Singh, S., & Dhawan, V. (2018, September). Effect of curing temperature on mechanical properties of natural fiber reinforced polymer composites. Journal of Natural Fibers, 15(5), 687–696. https://doi.org/10.1080/15440478.2017.1354744
  • Song, J. H. (2015, April). Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers. Composites Part B: Engineering, 79, 61–66. https://doi.org/10.1016/j.compositesb.2015.04.015
  • Supian, A. B. M., Sapuan, S. M., Zuhri, M. Y. M., Zainudin, E. S., & Ya, H. H. (2018, August 1). Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review. Defence Technology, 14(4), 291–305. China Ordnance Society. https://doi.org/10.1016/j.dt.2018.04.004
  • Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181–200. Elsevier Ltd. https://doi.org/10.1016/j.compositesa.2014.08.027
  • Taban, E., Khavanin, A., Jafari, A. J., Faridan, M., & Tabrizi, A. K. (2019, June). Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon, 5(6), e01977. https://doi.org/10.1016/j.heliyon.2019.e01977
  • Tajvidi, M., & Takemura, A. (2010, May). Thermal degradation of natural fiber-reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 23(3), 281–298. https://doi.org/10.1177/0892705709347063
  • Thakur, V. K., & Singha, A. S. (2010, January). Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polymer - Plastics Technology and Engineering, 49(7), 694–700. https://doi.org/10.1080/03602551003682067
  • Thwe, M. M., & Liao, K. (2002). Effects of environmental aging on the mechanical properties of bamboo ± glass ®ber reinforced polymer matrix hybrid composites. Composite Part A: Applied Science and Manufacturing, 33 (1), 43–52. Available. www.elsevier.com/locate/compositesa
  • Ugochukwu, S., Ridzuan, M. J. M., Abdul Majid, M. S., Cheng, E. M., Razlan, Z. M., & Marsi, N. (2021, April). Effect of thermal ageing on the scratch resistance of natural-fibre-reinforced epoxy composites. Composite Structures, 261, 113586. https://doi.org/10.1016/j.compstruct.2021.113586
  • Venkateshwaran, N., ElayaPerumal, A., Alavudeen, A., & Thiruchitrambalam, M. (2011, August). Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Materials and Design, 32(7), 4017–4021. https://doi.org/10.1016/j.matdes.2011.03.002
  • Vijaya Ramnath, B., Manickavasagam, V. M., Elanchezhian, C., Vinodh Krishna, C., Karthik, S., & Saravanan, K. (2014). Determination of mechanical properties of intra-layer abaca-jute-glass fiber reinforced composite. Materials and Design, 60, 643–652. https://doi.org/10.1016/j.matdes.2014.03.061
  • Wang, X., Petrů, M., & Yu, H. (2019, May). The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Construction and Building Materials, 208, 220–227. https://doi.org/10.1016/j.conbuildmat.2019.03.001
  • Yorseng, K., Rangappa, S. M., Pulikkalparambil, H., Siengchin, S., & Parameswaranpillai, J. (2020, February). Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: Morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Construction and Building Materials, 235, 117464. https://doi.org/10.1016/j.conbuildmat.2019.117464
  • Zahari, W. Z. W., Badri, R. N. R. L., Ardyananta, H., Kurniawan, D., & Nor, F. M. (2015). Mechanical properties and water absorption behavior of polypropylene/ijuk fiber composite by using silane treatment. In 2nd International Materials, Industrial, and Manufacturing Engineering Conference, 4-6 February, Bali, Indonesia, 2, 573–578. https://doi.org/10.1016/j.promfg.2015.07.099
  • Zain, S. N. Z. M., Ismarrubie, Z. N., & Zainudin, E. S. (2011). The effect of aging temperature on mechanical properties of banana pseudostem fiber reinforced polymer composite. Key Engineering Materials, 471–472, 444–448. https://doi.org/10.4028/www.scientific.net/KEM.471-472.444
  • Zegaoui, A., Derradji, M., Dayo, A. Q., Medjahed, A., Zhang, H.-Y., Cai, W.-A., Liu, W.-B., Ma, R.-K., & Wang, J. (2019, August). High-performance polymer composites with enhanced mechanical and thermal properties from cyanate ester/benzoxazine resin and short kevlar/glass hybrid fibers. High Performance Polymers, 31(6), 719–732. https://doi.org/10.1177/0954008318793181
  • Zhang, S., Li, Y., & Zheng, Z. (2018, December). Effect of physiochemical structure on energy absorption properties of plant fibers reinforced composites: Dielectric, thermal insulation, and sound absorption properties. Composites Communications, 10, 163–167. https://doi.org/10.1016/j.coco.2018.09.006