830
Views
1
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Investigation of the gamma photon shielding in Se–Te–Ag chalcogenide glasses using the Phy-X/PSD software

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2116829 | Received 10 Jun 2022, Accepted 21 Aug 2022, Published online: 11 Sep 2022

References

  • AbuAlRoos, N. J., Amin, N. A. B., & Zainon, R. (2019). Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry, 165, 108439. https://doi.org/10.1016/j.radphyschem.2019.108439
  • Ailavajhala, M. S., Gonzalez-Velo, Y., Poweleit, C. D., Barnaby, H. J., Kozicki, M. N., Butt, D. P., & Mitkova, M. (2014). New functionality of chalcogenide glasses for radiation sensing of nuclear wastes. Journal of Hazardous Materials, 269, 68–20. https://doi.org/10.1016/j.jhazmat.2013.11.050
  • Akkurt, I., Mavi, B., Akkurt, A., Basyigit, C., Kilincarslan, S., & Yalim, H. A. (2005). Study on Z dependence of partial and total mass attenuation coefficients. Journal of Quantitative Spectroscopy & Radiative Transfer, 94(3–4), 379–385. https://doi.org/10.1016/j.jqsrt.2004.09.024
  • Akman, F., Kaçal, M. R., Sayyed, M. I., & Karataş, H. A. (2019). Study of gamma radiation attenuation properties of some selected ternary alloys. Journal of Alloys and Compounds, 782, 315–322. https://doi.org/10.1016/j.jallcom.2018.12.221
  • Al-Baradi, A. M., Alotaibi, B. M., Alharbi, N., Abd El-Rehim, A. F., & Shaaban, K. S. (2022). Gamma radiation shielding and mechanical studies on highly dense lithium iron borosilicate glasses modified by zinc oxide. Silicon. 1-9. https://doi.org/10.1007/s12633-022-01801-9
  • Al-Buriahi, M. S., Abouhaswa, A. S., Tekin, H. O., Sriwunkum, C., El-Agawany, F. I., Nutaro, T., Kavaz, E., & Rammah, Y. S. (2020). Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3-BaCO3-Li2O3 glass systems. Ceramics International, 46(2), 1711–1721. https://doi.org/10.1016/j.ceramint.2019.09.144
  • Al-Buriahi, M. S., El-Agawany, F. I., Sriwunkum, C., Akyıldırım, H., Arslan, H., Tonguc, B. T., El-Mallawany, R., & Rammah, Y. S. (2020). Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Physica B: Condensed Matter, 581, 411946. https://doi.org/10.1016/j.physb.2019.411946
  • Al-Buriahi, M. S., & Mann, K. S. (2019). Radiation shielding investigations for selected tellurite-based glasses be-longing to the TNW system. Materials Research Express, 6(10), 105206. https://doi.org/10.1088/2053-1591/ab3f85
  • Al-Buriahi, M. S., & Rammah, Y. S. (2019). Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Applied Physics A, 125(10), 678. https://doi.org/10.1007/s00339-019-2976-z
  • Al-Buriahi, M. S., & Singh, V. P. (2020). Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. Journal of the Australian Ceramic Society, 56(3), 1127–1133. https://doi.org/10.1007/s41779-020-00457-1
  • Al-Buriahi, M. S., & Tonguc, B. T. (2019). Study on gamma-ray buildup factors of bismuth borate glasses. Applied Physics A, 125(7), 482. https://doi.org/10.1007/s00339-019-2777-4
  • Al-Hadeethi, Y., & Sayyed, M. I. (2020). Radiation attenuation properties of Bi2O3–Na2O– V2O5– TiO2–TeO2 glass system using Phy-X/PSD software. Ceramics International, 46(4), 4795–4800. https://doi.org/10.1016/j.ceramint.2019.10.212
  • Al-Hadeethi, Y., & Sayyed, M. I. (2020). Using Phy-X/PSD to investigate gamma photons in SeO2–Ag2O–TeO2 glass systems for shielding applications. Ceramics International, 46(8), 12416–12421. https://doi.org/10.1016/j.ceramint.2020.02.003
  • Al-Hadeethi, Y., Sayyed, M. I., & Agar, O. (2020). Ionizing photons attenuation characterization of quaternary tellurite–zinc–niobium–gadolinium glasses using Phy-X/PSD software. Journal of Non-Crystalline Solids, 538, 120044. https://doi.org/10.1016/j.jnoncrysol.2020.120044
  • Al-Hadeethi, Y., Sayyed, M. I., Mohammed, H., & Rimondini, L. (2020). X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceramics International, 46(1), 251–257. https://doi.org/10.1016/j.ceramint.2019.08.258
  • Al-Hadeethi, Y., Sayyed, M. I., & Rammah, Y. S. (2019). Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3 – Bi2O3 – ZnO – CaO glasses. Ceramics International, 45(16), 20724–20732. https://doi.org/10.1016/j.ceramint.2019.07.056
  • Al-Harbi, N., Sayyed, M. I., Kurtulus, R., Kamislioglu, M., Kumar, A., Alhuthali, A. M. S., Kavas, T., & Al-Hadeethi, Y. (2021). Understanding the role of Bi2O3 in the P2O5-CaO-Na2O-K2O glass system in terms of physical, structural and radiation shielding properties. Journal of Materials Science: Materials in Electronics, 32(9), 11649–11665. https://doi.org/10.1007/s10854-021-05775-z
  • Alzahrani, J. S., Alothman, M. A., Eke, C., Al-Ghamdi, H., Aloraini, D. A., & Al-Buriahi, M. S. (2021). Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Computational Materials Science, 196, 110566. https://doi.org/10.1016/j.commatsci.2021.110566
  • Alzahrani, J. S., Kavas, T., Kurtulus, R., & Al-Buriahi, M. S. (2021). Evaluations of physical and mechanical properties, and photon attenuation characteristics on lithium-germanate glass containing ZnO. Optik, 248. https://doi.org/10.1016/j.ijleo.2021.168078
  • Beir, V. (1990). Health effects of exposure to low levels of ionizing radiation. Biological Effects of Ionizing Radiations, 22–45. https://doi.org/10.17226/1224. .
  • Chilton, A. B., Shultis, J. K., & Faw, R. E. (1984). Principles of radiation shielding. Prentice-Hall.
  • Cinan, Z. M., Baskan, T., Erol, B., Mutlu, S., Misirlioglu, Y., Yilmaz, S. S., & Yilmaz, A. H. (2021). Gamma irradiation, thermal conductivity, and phase change tests of the cement-hyperbranched poly amino-ester-block-poly cabrolactone-polyurathane plaster-lead oxide and arsenic oxide composite for development of radiation shielding material. International Journal of Energy Research, 45(15), 20729–20762. https://doi.org/10.1002/er.7136
  • Cinan, Z. M., Erol, B., Baskan, T., Mutlu, S., Ortac, B., Yilmaz, S. S., & Yilmaz, A. H. (2022). Radiation shielding tests of crosslinked polystyrene-b-polyethyleneglycol block copolymers blended with nanostructured selenium dioxide and boron nitride particles. Nanomaterials, 12(3), 297. https://doi.org/10.3390/nano12030297
  • Cinan, Z. M., Erol, B., Baskan, T., Mutlu, S., Yilmaz, S. S., & Yilmaz, A. H. (2021). Gamma irradiation and the radiation shielding characteristics: For the lead oxide doped the crosslinked polystyrene-b-polyethyleneglycol block copolymers and the polystyrene-b-polyethyleneglycol-boron nitride nanocomposites. Polymers, 13(19), 3246. https://doi.org/10.3390/polym13193246
  • Donghui, Z., Hua, W., Guorong, C., Baccaro, S., Cecilia, A., Falconieri, M., & Pilloni, L. (2006). Gamma‐ray‐induced multi‐effect on properties of chalcogenide glasses. Journal of the American Ceramic Society, 89(11), 3582–3584. https://doi.org/10.1111/j.1551-2916.2006.01268.x
  • El-Agawany, F. I., Kavaz, E., Perişanoğlu, U., Al-Buriahi, M., & Rammah, Y. S. (2019). Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Applied Physics A, 125(12), 838. https://doi.org/10.1007/s00339-019-3129-0
  • El-Agawany, F. I., Mahmoud, K. A., Kavaz, E., El-Mallawany, R., & Rammah, Y. S. (2020). Evaluation of nuclear radiation shielding competence for ternary Ge–Sb–S chalcogenide glasses. Applied Physics A, 126(4), 1–11. https://doi.org/10.1007/s00339-020-3426-7
  • El-Qahtani, Z. M. H., Shaaban, E. R., & Soraya, M. M. (2021). Attenuation characteristics of high-energy radiation on As-Se-Sn chalcogenide glassy alloy. Chalcogenide Letters, 18(6), 311–326. http://chalcogen.ro/311_QahtaniZM.pdf.
  • Gaikwad, D. K., Obaid, S. S., Sayyed, M. I., Bhosale, R. R., Awasarmol, V. V., Kumar, A., Shirsat, M. D., & Pawar, P. P. (2018). Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes. Materials Chemistry and Physics, 213, 508–517. https://doi.org/10.1016/j.matchemphys.2018.04.019
  • Gokce, H. S., Yalcinkaya, C., & Tuyan, M. (2018). Optimization of reactive powder concrete by means of barite aggregate for both neutrons and gamma rays. Construction and Building Materials, 189, 470–477. https://doi.org/10.1016/j.conbuildmat.2018.09.022
  • Guo, H., Wang, Y., Gong, Y., Yin, H., Mo, Z., Tang, Y., & Chi, L. (2016). Optical band gap and photoluminescence in heavily Tb3+ doped GeO2-B2O3-SiO2-Ga2O3 magneto-optical glasses. Journal of Alloys and Compounds, 686, 635–640. https://doi.org/10.1016/j.jallcom.2016.06.074
  • Han, I., & Demir, L. (2009). Studies on effective atomic numbers, electron densities from mass attenuation coefficients in TixCo1-x and CoxCu1-x alloys. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 267(21–22), 3505–3510. https://doi.org/10.1016/j.nimb.2009.08.022.
  • Han, I., & Demir, L. (2010). Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys. Journal of X-Ray Science and Technology, 18(1), 39–46. https://doi.org/10.3233/XST-2010-0238
  • Hewak, D. W. (2011). The promise of chalcogenides. Nature Photonics, 5(8), 474. https://doi.org/10.1038/nphoton.2011.155
  • Hsiao, C. L., Wu, K. H., & Wan, K. S. (2011). Effects of environmental lead exposure on T-helper cell-specific cytokines in children. Journal of Immunotoxicology, 8(4), 284–287. https://doi.org/10.3109/1547691X.2011.592162
  • Hubbell, J. H., & Seltzer, S. M. (1995). Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 meV for elements z = 1 to 92 and 48 additional substances of dosimetric interest (National Institute of Standards and Technology (NIST)). p. Medium: P; Size: 116 p.
  • Hulbert, S. M., & Carlson, K. A. (2009). Is lead dust within nuclear medicine departments a hazard to pediatric patients? Journal of Nuclear Medicine Technology, 37(3), 170–172. https://doi.org/10.2967/jnmt.109.062281
  • Issa, S. A. M. et al. (2019). Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code. Materials Chemistry and Physics, 223, 209–219. https://doi.org/10.1016/j.matchemphys.2018.10.064.
  • Jackson, D. F., & Hawkes, D. J. (1981). X-ray attenuation coefficients of elements and mixtures. Physics Reports, 70(3), 169–233. https://doi.org/10.1016/0370-1573(81)90014-4
  • Kaplan, M. F. (1989). Concrete radiation shielding: Nuclear physics, concrete properties, design and construction. Longman Scientific & Technical.
  • Kavas, T., Alsufyani, S. J., Alrowaili, Z. A., Tamam, N., Kurtulus, R., Olarinoye, I. O., & Al-Buriahi, M. S. (2022). Influence of iron (III) oxide on the optical, mechanical, physical, and radiation shielding properties of sodium-barium-vanadate glass system. Optik, 257. https://doi.org/10.1016/j.ijleo.2022.168844
  • Kebaili, I., Boukhris, I., Al-Buriahi, M. S., Alalawi, A., & Sayyed, M. I. (2021). Ge-Se-Sb-Ag chalcogenide glasses for nuclear radiation shielding applications. Ceramics International, 47(1), 1303–1309. https://doi.org/10.1016/j.ceramint.2020.08.251
  • Kumar, A., Gaikwad, D. K., Obaid, S. S., Tekin, H. O., Agar, O., & Sayyed, M. I. (2020). Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+x) PbO10WO3 10Na2O − 10MgO – (40-x) B2O3 glasses. Progress in Nuclear Energy, 119, 103047. https://doi.org/10.1016/j.pnucene.2019.103047
  • Kurtulus, R., Kavas, T., Akkurt, I., Gunoglu, K., Tekin, H. O., & Kurtulus, C. (2021). A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: Synthesis, spectrometer, XCOM, and MCNP-X works. Journal of Materials Science-Materials in Electronics, 32(10), 13882–13896. https://doi.org/10.1007/s10854-021-05964-w
  • Mahmoud, K. A., Sayyed, M. I., & Tashlykov, O. L. (2019). Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nuclear Engineering and Technology, 51(7), 1835–1841. https://doi.org/10.1016/j.net.2019.05.013
  • Mahmoud, K. A., Tashlykov, O. L., El Wakil, A. F., & El Aassy, I. E. (2020). Aggregates grain size and press rate dependence of the shielding parameters for some concretes. Progress in Nuclear Energy, 118, 103092. https://doi.org/10.1016/j.pnucene.2019.103092
  • Manjunatha, H. C. (2017). A study of gamma attenuation parameters in poly methyl methacrylate and Kapton. Radiation Physics and Chemistry, 137, 254–259. https://doi.org/10.1016/j.radphyschem.2016.01.024
  • Mariselvam, K., & Liu, J. C. (2022). Concentration effect of Tm3+ ions doped B2O3-Li2CO3-BaCO3-CaF2-ZnO glasses: Blue laser and radiation shielding investigations. Optics and Laser Technology, 154, 108262. https://doi.org/10.1016/j.optlastec.2022.108262
  • Mhareb, M. H. A., Zeama, M., Elsafi, M., Alajerami, Y. S., Sayyed, M. I., Saleh, G., Hamad, R. M., & Hamad, M. K. (2021). Radiation shielding features for various tellurium-based alloys: A comparative study. Journal of Materials Science: Materials in Electronics, 32(23), 26798–26811. https://doi.org/10.1007/s10854-021-07057-0
  • Mikla, V. I., Turovci, J. M., Mikla, V. V., & Mehta, N. (2018). Molecular structure of Se-rich amorphous films. Progress in Solid State Chemistry, 49, 1–15. https://doi.org/10.1016/j.progsolidstchem.2017.10.001
  • Mishra, M., Chauhan, R., Katiyar, A., & Srivastava, K. K. (2011). Optical properties of amorphous thin film of Se-Te-Ag system prepared by using thermal evaporation technique. Progress in Natural Science: Materials International, 21(1), 36–39. https://doi.org/10.1016/S1002-0071(12)60022-7
  • Obaid, S. S., Gaikwad, D. K., & Pawar, P. P. (2018). Determination of gamma ray shielding parameters of rocks and concrete. Radiation Physics and Chemistry, 144, 356–360. https://doi.org/10.1016/j.radphyschem.2017.09.022
  • Obaid, S. S., Sayyed, M. I., Gaikwad, D. K., & Pawar, P. P. (2018). Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiation Physics and Chemistry, 148, 86–94. https://doi.org/10.1016/j.radphyschem.2018.02.026
  • Ogawa, M., Nakajima, Y., Kubota, R., & Endo, Y. (2008). Two cases of acute lead poisoning due to occupational exposure to lead. Clinical Toxicology, 46(4), 332–335. https://doi.org/10.1080/15563650701816448
  • Perisanoglu, U., El-Agawany, F. I., Kavaz, E., Al-Buriahi, M., & Rammah, Y. S. (2020). Surveying of Na2O3-BaO-PbO-Nb2O5-SiO2-Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceramics International, 46(3), 3190–3202. https://doi.org/10.1016/j.ceramint.2019.10.023
  • Rammah, Y. S., Askin, A., Abouhaswa, A. S., El-Agawany, F. I., & Sayyed, M. I. (2019). Synthesis, physical, structural and shielding properties of newly developed B2O3–ZnO–PbO–Fe2O3 glasses using Geant4 code and WinXCOM program. Applied Physics A, 125(8), 523. https://doi.org/10.1007/s00339-019-2831-2
  • Rammah, Y. S., El-Agawany, F. I., & El-Mesady, I. A. (2019). Evaluation of photon attenuation and optical characterizations of bismuth lead borate glasses modified by TiO2. Applied Physics A, 125(10), 727. https://doi.org/10.1007/s00339-019-3023-9
  • Rammah, Y. S., Sayyed, M. I., Ali, A. A., Tekin, H. O., & El-Mallawany, R. (2018). Optical properties and gamma-shielding features of bismuth borate glasses. Applied Physics A, 124(12), 832. https://doi.org/10.1007/s00339-018-2252-7
  • Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Schindler, C., Valov, I., & Waser, R. (2009). Faradaic currents during electroforming of resistively switching Ag–Ge–Se type electrochemical metallization memory cells. Physical Chemistry Chemical Physics, 11(28), 5974–5979. https://doi.org/10.1039/b901026b
  • SCHOTT. Technicalproperties of Radiation Shielding Glasses | SCHOTT. Accessed 21 July 2022. https://www.schott.com/en-us/products/radiation-shielding-glasses-p1000330/technical-details?tab=a1e7a3e14e944b158807b6d8f7547d71
  • Tekin, H. O., & Kilicoglu, O. (2020). The influence of gallium (Ga) additive on nuclear radiation shielding effectiveness of Pd/Mn binary alloys. Journal of Alloys and Compounds, 815, 152484. https://doi.org/10.1016/j.jallcom.2019.152484
  • Tonguc, B. T., Arslan, H., & Al-Buriahi, M. S. (2018). Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiation Physics and Chemistry, 153, 86–91. https://doi.org/10.1016/j.radphyschem.2018.08.025
  • Wood, J. I. (1982). Computational Methods in Reactor Shielding. Pergamon Press.
  • Yankov, G., Dimowa, L., Petrova, N., Tarassov, M., Dimitrov, K., Petrov, T., & Shivachev, B. L. (2012). Synthesis, structural and non-linear optical properties of TeO2-GeO2-Li2O glasses. Optical Materials, 35(2), 248–251. https://doi.org/10.1016/j.optmat.2012.08.002